1
|
Zhu J, Huang Y, Chai W, Xia P. Decoding the Chloroplast Genome of Tetrastigma (Vitaceae): Variations and Phylogenetic Selection Insights. Int J Mol Sci 2024; 25:8290. [PMID: 39125860 PMCID: PMC11312916 DOI: 10.3390/ijms25158290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tetrastigma (Vitaceae) is known for its ornamental, medicinal, and ecological significance. However, the structural and variational characteristics of the Tetrastigma chloroplast genome and their impact on phylogenetic relationships remain underexplored. This study utilized bioinformatics methods to assemble and annotate the chloroplast genomes of 10 Tetrastigma species and compare them with five previously sequenced species. This study analyzed gene composition, simple sequence repeats, and codon usage patterns, revealing a high A/T content, uniquely identified pentanucleotide repeats in five species and several preferred codons. In addition, comparative analyses were conducted of the chloroplast genomes of 15 Tetrastigma species, examining their structural differences and identifying polymorphic hotspots (rps16, rps16-trnQ, trnS, trnD, psbC-trnS-psbZ, accD-psaI, psbE-petL-petG, etc.) suitable for DNA marker development. Furthermore, phylogenetic and selective pressure analyses were performed based on the chloroplast genomes of these 15 Tetrastigma species, validating and elucidating intra-genus relationships within Tetrastigma. Futhermore, several genes under positive selection, such as atpF and accD, were identified, shedding light on the adaptive evolution of Tetrastigma. Utilizing 40 Vitaceae species, the divergence time of Tetrastigma was estimated, clarifying the evolutionary relationships within Tetrastigma relative to other genera. The analysis revealed diverse divergences of Tetrastigma in the Miocene and Pliocene, with possible ancient divergence events before the Eocene. Furthermore, family-level selective pressure analysis identified key features distinguishing Tetrastigma from other genera, showing a higher degree of purifying selection. This research enriches the chloroplast genome data for Tetrastigma and offers new insights into species identification, phylogenetic analysis, and adaptive evolution, enhancing our understanding of the genetic diversity and evolutionary history of these species.
Collapse
Affiliation(s)
- Junqiao Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weiguo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China;
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Shah LR, Ahmed N, Hussain K, Mansoor S, Khan T, Khan I, Narayan S, Afroza B, Murtaza I, Shikari AB, Bhat B, Masoodi KZ. Mapping phenotypic performance and novel SNPs for cold tolerance in tomato (Solanum lycopersicum) genotypes through GWAS and population genetics. BMC Genom Data 2024; 25:9. [PMID: 38281048 PMCID: PMC10822167 DOI: 10.1186/s12863-024-01190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/01/2024] [Indexed: 01/29/2024] Open
Abstract
The cold stress susceptibility of tomato (Solanum lycopersicum) curtails its cultivation, with significant impact in temperate regions and on cropping seasons. To unravel genomic regions responsible for cold stress resilience, a diverse set of fifty genotypes encompassing cultivated, wild species, and landraces were genotyped using genotyping-by-sequencing. Over two years and six trials employing both early and late sowing, these lines were evaluated. Illumina-based next-generation sequencing produced up to 3 million reads per sample from individually sequenced library pools. The Tassel pipeline yielded 10,802 variants, subsequently filtered to 3,854 SNPs for genome-wide association analysis (GWAS). Employing clustering methods (population structure) via TASSEL, SNPhylo, and Kinship matrix, the fifty genotypes clustered into four distinct gene pools. The GWAS for cold tolerance in tomato integrated key traits including yield. Using six independent phenotypic datasets representing various environments, the study identified 4,517 significant marker-trait associations for cold tolerance traits. Notably, pivotal variations (> 10%) in cold stress tolerance, particularly proline content, were linked to marker-trait associations. Additionally, 5,727 significant marker-trait associations for yield and yield-related traits were unveiled, shedding light on fruit yield and directly associated attributes. The investigation pinpointed 685 candidate genes across all examined traits, including 60 genes associated with biological processes within these genomic regions. Remarkably, 7 out of the 60 genes were directly linked to abiotic stress tolerance, functioning as stress-responsive genes either directly or indirectly. The identified genes, particularly those associated with stress response, could hold the key to enhancing cold tolerance and overall crop productivity in tomato cultivation.
Collapse
Affiliation(s)
- Labiba Riyaz Shah
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Nazeer Ahmed
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Khursheed Hussain
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Sheikh Mansoor
- Transcriptomics Lab (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Tamana Khan
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Imran Khan
- Division of Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Sumati Narayan
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Baseerat Afroza
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Imtiyaz Murtaza
- Division of Basic Sciences and Humanities, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Asif Bashir Shikari
- Division of Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, Wadoora, Sopore, 193201, India
| | - Basharat Bhat
- NAHEP, IDP, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, J&K, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab (K-Lab), Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
3
|
Brake M, Al-Qadumii L, Hamasha H, Migdadi H, Awad A, Haddad N, Sadder MT. Development of SSR Markers Linked to Stress Responsive Genes along Tomato Chromosome 3 (Solanum lycopersicum L.). BIOTECH 2022; 11:biotech11030034. [PMID: 35997342 PMCID: PMC9397033 DOI: 10.3390/biotech11030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to develop novel SSR markers in tomato. Several BAC clones along chromosome 3 in tomato were selected based on their content. The criteria was the availability of genes, either directly or indirectly related to stress response (drought, salinity, and heat) in tomato. A total of 20 novel in silico SSR markers were developed and 96 important nearby genes were identified. The identified nearby genes represent different tomato genes involved in plant growth and development and biotic and abiotic stress tolerance. The developed SSR markers were assessed using tomato landraces. A total of 29 determinate and semi-determinate local tomato landraces collected from diverse environments were utilized. A total of 33 alleles with mean of 1.65 alleles per locus were scored, showing 100% polymorphic patterns, with a mean of 0.18 polymorphism information content (PIC) values. The mean of observed and expected heterozygosity were 0.19 and 0.24, respectively. The mean value of the Jaccard similarity index was used for clustering the landraces. The developed microsatellite markers showed potential to assess genetic variability among tomato landraces. The genetic distance information reported in this study can be used by breeders in future genetic improvement of tomato for tolerance against diverse stresses.
Collapse
Affiliation(s)
- Mohammad Brake
- Science Department, Jerash University, Jerash 26150, Jordan
| | - Lana Al-Qadumii
- Faculty of Science, Philadelphia University, Jerash 19392, Jordan
| | - Hassan Hamasha
- Science Department, Jerash University, Jerash 26150, Jordan
| | | | - Abi Awad
- Food Testing Lab, Jordan Standards and Metrology Organization, Amman 11194, Jordan
| | - Nizar Haddad
- National Agricultural Research Center, Amman 19381, Jordan
| | - Monther T. Sadder
- Plant Biotechnology Lab, Department of Horticulture and Crop Science, School of Agriculture, University of Jordan, Amman 11942, Jordan
- Correspondence:
| |
Collapse
|
4
|
Khan A, Ahmad M, Ahmed M, Gill KS, Akram Z. Association analysis for agronomic traits in wheat under terminal heat stress. Saudi J Biol Sci 2021; 28:7404-7415. [PMID: 34867044 PMCID: PMC8626334 DOI: 10.1016/j.sjbs.2021.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/01/2022] Open
Abstract
Terminal heat stress leads to irreversible damage in wheat. Marker assisted selection and gene pyramiding for portrayal of heat tolerance. Allelic frequency and polymorphic information showed significant variability. Markers xcfa2147 and xwmc671 could be potentail for heat stress tolerance.
Terminal heat stress causes irreversible damage to wheat crop productivity. It reduces the vegetative growth and flowering period that consequently declines the efficiency to capture available stem reserves (carbohydrates) in grains. Markers associated with thermotolerant traits ease in marker assisted selection (MAS) for crop improvement. It identifies the genomic regions associated with thermotolerant traits in wheat, but the scarcity of markers is the major hindrance in crop improvement. Therefore, 158 wheat genotypes were subjected to genotyping with 165 simple sequence repeat markers dispersed on three genomes (A, B and D). Allelic frequency and polymorphic information content values were highest on genome A (5.34 (14% greater than the lowest value at genome D) and 0.715 (3% greater than the lowest value at genome D)), chromosome 4 (5.40 (16% greater than the lowest value at chromosome 2) and 0.725 (5% greater than the lowest value at chromosome 6)) and marker xgwm44 (13.0 (84% greater than the lowest value at marker xbarc148) and 0.916 (46% greater than the lowest value at marker xbarc148)). Bayesian based population structure discriminated the wheat genotypes into seven groups based on genetic similarity indicating their ancestral origin and geographical ecotype. Linkage disequilibrium pattern had highest significant (P < 0.001) linked loci pairs 732 on genome A at r2 > 0.1 whereas, 58 on genome B at r2 > 0.5. Linkage disequilibrium decay (P < 0.01 and r2 > 0.1) had larger LD block (5–10 cM) on genome A. Highly significant MTAs (P < 0.000061) under heat stress conditions were identified for flag leaf area (xwmc336), spikelet per spike (xwmc553), grains per spike (cxfa2147, xwmc418 and xwmc121), biomass (xbarc7) and grain yield (xcfa2147 and xwmc671). The identified markers in this study could facilitate in MAS and gene pyramiding against heat stress in wheat.
Collapse
Affiliation(s)
- Adeel Khan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Mukhtar Ahmed
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.,Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 UMEÅ, Sweden
| | - Kulvinder Singh Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman 646420, USA
| | - Zahid Akram
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|