1
|
Liu Y, Zhao M, Shi J, Yang S, Xue Y. Genome-Wide Identification of AhMDHs and Analysis of Gene Expression under Manganese Toxicity Stress in Arachis hypogaea. Genes (Basel) 2023; 14:2109. [PMID: 38136931 PMCID: PMC10743186 DOI: 10.3390/genes14122109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Malate dehydrogenase (MDH) is one kind of oxidation-reduction enzyme that catalyzes the reversible conversion of oxaloacetic acid to malic acid. It has vital functions in plant development, photosynthesis, abiotic stress responses, and so on. However, there are no reports on the genome-wide identification and gene expression of the MDH gene family in Arachis hypogaea. In this study, the MDH gene family of A. hypogaea was comprehensively analyzed for the first time, and 15 AhMDH sequences were identified. According to the phylogenetic tree analysis, AhMDHs are mainly separated into three subfamilies with similar gene structures. Based on previously reported transcriptome sequencing results, the AhMDH expression quantity of roots and leaves exposed to manganese (Mn) toxicity were explored in A. hypogaea. Results revealed that many AhMDHs were upregulated when exposed to Mn toxicity, suggesting that those AhMDHs might play an important regulatory role in A. hypogaea's response to Mn toxicity stress. This study lays foundations for the functional study of AhMDHs and further reveals the mechanism of the A. hypogaea signaling pathway responding to high Mn stress.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Shaoxia Yang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Ennoury A, Nhhala N, Kchikich A, Roussi Z, Asri SE, Zouaoui Z, Nhiri M. Saltbuch extract: a bio-solutionfor cadmium stress sorghum plants in germination and maturation. Biometals 2023; 36:997-1012. [PMID: 36933179 DOI: 10.1007/s10534-023-00499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Cadmium (Cd) is one of the dangerous factors that have negative impacts on plants and human health. Recently, many researchers have been looking for biostimulants to use as bioprotectants that can help or ameliorate plants' tolerance against abiotic stress, including Cd. To test the dangerousness of Cd accumulated in the soil, 200 µM of the latter was applied to sorghum seeds at germination and maturation stages. At the same time, Atriplex halimus water extract (0.1%, 0.25%, 0.5%) was applied to test its efficacy on Cd alleviation in sorghum plants. The obtained results showed that the tested concentrations enhanced the tolerance of sorghum to Cd by enhancing the germination indexes parameters such as germination percentage (GP), seedling vigor index (SVI), and reducing the mean germination time (MGT) of sorghum seeds grown under cadmium stress. On the other hand, the morphological parameters (height and weight) as well as the physiological parameters (chlorophyll and carotenoid) were stimulated in treated maturated sorghum plants under Cd stress. In addition, 0.5% and 0.25% of Atriplex halimus extract (AHE) stimulated the antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase, and glutathione reductase. In the same time, an increase in carbon-nitrogen enzymes was recorded in the case of AHE treatment; phosphoenol pyruvate carboxylase, glutamine synthase, glutamate dehydrogenase, and amino acid transferase were all upregulated. These results suggest that using AHE as a biostimulant could be a better strategy to enhance the tolerance of sorghum plants to Cd stress.
Collapse
Affiliation(s)
- Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco.
| | - Nada Nhhala
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Anass Kchikich
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| |
Collapse
|
3
|
Roussi Z, Ennoury A, Krid A, Nhiri M. Sage leaf rock rose water extract: a bio-solution for enhancing the growth and salt stress resistance of sorghum plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1339-1352. [PMID: 38024950 PMCID: PMC10678872 DOI: 10.1007/s12298-023-01370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Sorghum bicolor, a versatile cereal grain, holds significant agronomic importance globally and plays a crucial role in addressing food insecurity. However, salinity, a major abiotic stress, poses a threat to food production by reducing soil fertility and hindering plant growth and yield. In this study, we investigated the potential of Cistus salviifolius water extract (CSE) in mitigating salt stress in sorghum plants. Salt stress severely impacted plant growth, biomass, and chlorophyll production, and reduced indole-3-acetic acid (IAA) levels, which negatively affected plant development. Salt stress also led to the buildup of reactive oxygen species (ROS), hence, resulting in oxidative harm to sorghum plants and also affecting their carbon and nitrogen metabolism. On the other hand, CSE treatments increased IAA and chlorophyll content which promoted growth under stress. Furthermore, this extract exhibited strong ROS scavenging capacity and safeguarded plants against oxidative stress by enhancing the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase) and increasing the production of osmolytes. Additionally, CSE treatments enhanced the activities of carbon/nitrogen enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and glutamine synthase), promoting energy synthesis and crop growth. This led to a significant increase in sorghum growth in salted soil with the highest rise recorded for 5 mg/L of CSE (an increase of 48.23% and 158.36% in length and weight compared to the salt control), which highlights this extract's potential as a biostimulant to enhance crop tolerance to salinity and contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Km 10, Ziaten. BP: 416, Tetouan, Tangier, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Km 10, Ziaten. BP: 416, Tetouan, Tangier, Morocco
| | - Azzouz Krid
- Environmental Technologies, Biotechnology and Valorization of Bio-Resources Team, TEBVB, FSTH, Abdelmalek Essaadi University, Tetouan, 93020 Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Km 10, Ziaten. BP: 416, Tetouan, Tangier, Morocco
| |
Collapse
|
4
|
Ennoury A, Roussi Z, Nhhala N, Zouaoui Z, Kabach I, Krid A, Kchikich A, Nhiri M. Atriplex halimus water extract: a biochemical composition that enhanced the faba bean plants growth. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:601-611. [PMID: 37187778 PMCID: PMC10172430 DOI: 10.1007/s12298-023-01311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
The burgeoning world population is exerting immense pressure on the agricultural sector to increase yield production, which has resulted in the widespread use of chemical products by farmers. However, these chemicals can have detrimental effects on both human health and the environment. To mitigate these risks, it is crucial to identify natural solutions that are less harmful to both humans and the environment. This study explores the impact of Atriplex halimus extract on the growth of Vicia faba L. broad vetch plants by testing three different concentrations (0.1%, 0.25%, and 0.5%) of the extract. The findings reveal that Atriplex halimus extract has a positive effect on various physiological and biochemical parameters of the plants, which ultimately leads to improved growth. Specifically, the treated plants displayed a significant (p < 0.05) increase in the content of plant metabolites and photosynthetic pigments. Furthermore, the extract enhanced the activity of enzymes that are involved in carbon-nitrogen assimilation, such as phosphoenolpyruvate carboxylase (EC 4.1.1.31), isocitrate dehydrogenase (EC 1.1.1.42), glutamine synthase (EC 6.3.1.2), glutathione-s-transferase (EC 2.5.1.18), and glutathione reductase (EC 1.8.1.7). The most significant improvement was observed in plants treated with 0.25% of Atriplex halimus extract. Therefore, it can be inferred that the application of Atriplex halimus extract has the potential to be an effective biostimulant for improving the growth and yield of faba bean plants.
Collapse
Affiliation(s)
- Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Nada Nhhala
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Azzouz Krid
- Environmental Technology, Biotechnology, and Valorization of Bio-Resources, Faculty of Science and Techniques of Al Hoceima–Abdelmalek Essaadi University, BP 34, Ajdir, 32003 Al Hoceima, Morocco
| | - Anass Kchikich
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan, Morocco
| |
Collapse
|