1
|
Tariq TB, Karishma, Umer M, Mubeen-Ur-Rehman. The potential of seaweed-derived polysaccharides as sustainable biostimulants in agriculture. Int J Biol Macromol 2025; 298:140009. [PMID: 39828156 DOI: 10.1016/j.ijbiomac.2025.140009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Seaweed polysaccharides such as alginate, carrageenan, agar, and ulvan are emerging as key bioresources in sustainable agriculture due to their unique structural characteristics and functional properties. This review highlights their potential as eco-friendly biostimulants capable of enhancing soil health, plant growth, and stress resilience. Specific mechanisms, including the gel-forming capacity of alginate, ion exchange abilities, and the hydrophilic nature of these polysaccharides, enable improved water retention, nutrient uptake, and plant productivity under adverse conditions, including drought, salinity, and extreme temperatures. Moreover, their role as hydrogels and bio-elicitors introduces novel approaches to addressing global challenges in agriculture, such as climate change and food security. Real-world applications, such as the use of Ascophyllum nodosum extract for drought tolerance and Gracilaria tenuistipitata var. liui to boost grain yields, underscore the practicality and success of these biostimulants. Despite their promising applications, challenges like variability in seaweed quality, high extraction costs, and limited product standardization hinder their scalability. This review provides an integrated analysis of their biochemical properties, agricultural applications, and commercial products while proposing solutions to optimize their use for advancing sustainable farming practices.
Collapse
Affiliation(s)
- Tayyaba Bint Tariq
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Karishma
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Umer
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mubeen-Ur-Rehman
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
2
|
Tang Q, Wei S, Zheng X, Tu P, Tao F. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 2024; 44:1533-1551. [PMID: 38267262 DOI: 10.1080/07388551.2023.2299769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
3
|
Martins VFR, Coelho M, Machado M, Costa E, Gomes AM, Poças F, Sperotto RA, Rosa-Martinez E, Vasconcelos M, Pintado ME, Morais RMSC, Morais AMMB. Integrated Valorization of Fucus spiralis Alga: Polysaccharides and Bioactives for Edible Films and Residues as Biostimulants. Foods 2024; 13:2938. [PMID: 39335867 PMCID: PMC11431149 DOI: 10.3390/foods13182938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Fucus spp. seaweeds thrive in the cold temperate waters of the northern hemisphere, specifically in the littoral and sublittoral regions along rocky shorelines. Moreover, they are known to be a rich source of bioactive compounds. This study explored the valorization of Fucus spiralis through the extraction of bioactives and polysaccharides (PSs) for food applications and biostimulant use. The bioactives were extracted using microwave hydrodiffusion and gravity (MHG), where the condition of 300 W for 20 min resulted in the highest total phenolic content and antioxidant activity of the extract. Cellular assays confirmed that the extract, at 0.5 mg/mL, was non-cytotoxic to HaCat cells. Polysaccharides (PSs) were extracted from the remaining biomass. The residue from this second extraction contained 1.5% protein and 13.35% carbohydrates. Additionally, the free amino acids and minerals profiles of both solid residues were determined. An edible film was formulated using alginate (2%), PS-rich Fucus spiralis extract (0.5%), and F. spiralis bioactive-rich extract (0.25%). The film demonstrated significant antioxidant properties, with ABTS and DPPH values of 221.460 ± 10.389 and 186.889 ± 36.062 µM TE/mg film, respectively. It also exhibited notable physical characteristics, including high water vapor permeability (11.15 ± 1.55 g.mm.m-2.day-1.kPa-1) and 100% water solubility. The residues from both extractions of Fucus spiralis exhibited biostimulant (BS) effects on seed germination and seedling growth. BSs with PSs enhanced pea germination by 48%, while BSs without PSs increased the root dry weight of rice and tomato by 53% and up to 176%, respectively, as well as the shoot dry weight by up to 38% and up to 74%, respectively. These findings underscore the potential of Fucus spiralis within the framework of a circular economy, wherein both extracted bioactives and post-extraction by-products can be used for sustainable agriculture and food applications.
Collapse
Affiliation(s)
- Valter F. R. Martins
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Marta Coelho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Manuela Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Eduardo Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Ana M. Gomes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Fátima Poças
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Raul A. Sperotto
- Graduate Program in Plant Physiology, Botany Department, Biology Institute, Federal University of Pelotas, Pelotas 96160-000, Brazil;
| | - Elena Rosa-Martinez
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Marta Vasconcelos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Rui M. S. C. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
4
|
Korkmaz E, Çiçek N. Investigation of The Alleviating Effect of Liquid Seaweed Fertilizer on Lavandula officinalis under Salt Stress. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:187. [PMID: 38253777 DOI: 10.1007/s10661-024-12377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Sustainable practices in plant production involve various environmental methods that improve the urban ecosystem by preserving both natural resources and biological diversity. Organic material application against salt stress is one of the most important sustainable practices. The purpose of this study was to explore how various traits of Lavandula officinalis under salt stress were affected by seaweed liquid. To this end, the experiment was performed as a completely randomized experimental design with two factors including four replications under greenhouse conditions. In the experiments, salt concentrations were prepared as control (distilled water), 40 mM and 80 mM NaCl, and seaweed liquid levels were applied as control (0%) - 0.5%-1%-2% and 4%. L. officinalis was considerably negatively affected by salt stress in terms of its quality, growth, photosynthetic and biochemical traits. According to the results of this empirical research, seaweed liquid application was the alleviating factor in negative effects in all traits resulting from the increase in NaCl concentrations. Seaweed liquid also revealed the highest values of all traits in the absence of salt stress. Photosynthetic and biochemical traits without proline, Relative water content, and chlorophyll a/b declined more than other quality and growth traits with a rise in salt content from 0 to 40 mM. Further research will be needed to test the beneficial effects of seaweed liquid on traits of L. officinalis seedlings in outdoor landscaping that includes salty spaces.
Collapse
Affiliation(s)
- Elif Korkmaz
- Graduate School of Natural and Applied Sciences, Cankiri Karatekin University, Cankiri, Turkey
| | - Nuray Çiçek
- Faculty of Forestry, Department of Landscape Architecture, Cankiri Karatekin University, Cankiri, Turkey.
| |
Collapse
|
5
|
Adedayo AA, Babalola OO. Genomic mechanisms of plant growth-promoting bacteria in the production of leguminous crops. Front Genet 2023; 14:1276003. [PMID: 38028595 PMCID: PMC10654986 DOI: 10.3389/fgene.2023.1276003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Legumes are highly nutritious in proteins and are good food for humans and animals because of their nutritional values. Plant growth-promoting bacteria (PGPR) are microbes dwelling in the rhizosphere soil of a plant contributing to the healthy status, growth promotion of crops, and preventing the invasion of diseases. Root exudates produced from the leguminous plants' roots can lure microbes to migrate to the rhizosphere region in other to carry out their potential activities which reveals the symbiotic association of the leguminous plant and the PGPR (rhizobia). To have a better cognition of the PGPR in the rhizosphere of leguminous plants, genomic analyses would be conducted employing various genomic sequences to observe the microbial community and their functions in the soil. Comparative genomic mechanism of plant growth-promoting rhizobacteria (PGPR) was discussed in this review which reveals the activities including plant growth promotion, phosphate solubilization, production of hormones, and plant growth-promoting genes required for plant development. Progress in genomics to improve the collection of genotyping data was revealed in this review. Furthermore, the review also revealed the significance of plant breeding and other analyses involving transcriptomics in bioeconomy promotion. This technological innovation improves abundant yield and nutritional requirements of the crops in unfavorable environmental conditions.
Collapse
|