Use of a Novel, Reinforced, Low Immunogenic, Porcine Small Intestine Submucosa Patch to Repair a Supraspinatus Tendon Defect in a Rabbit Model.
BIOMED RESEARCH INTERNATIONAL 2019;
2019:9346567. [PMID:
31073531 PMCID:
PMC6470437 DOI:
10.1155/2019/9346567]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 11/17/2022]
Abstract
Background
Repairs of large to massive rotator cuff tears have a high failure rate. We investigated the efficacy of a novel, reinforced, low immunogenic, porcine small intestine submucosa (SIS) patch to repair a supraspinatus tendon defect in a rabbit model. We hypothesized that the histological and biomechanical results of SIS patch repair would be comparable with those of autologous fascia lata (FL) repair.
Methods
The study mainly comprised two parts. First, the characteristics of the SIS patch were evaluated, including its micromorphology, mechanical properties, and immunogenic properties. Second, a supraspinatus tendon defect model was created in 36 rabbits (72 shoulders). The bilateral shoulders were randomly chosen to undergo repair using either a SIS patch (SIS group) or autologous FL (FL group). At 4, 8, and 12 weeks, histological analysis was performed using four shoulders from each group, and biomechanical tests were performed using eight shoulders from each group.
Results
The SIS patch was a three-dimensional construct mainly composed of collagen fibers. The mean single and double suture retention loads of the SIS patch were 48.6 ± 5.8 N and 117.9 ± 2.7 N, respectively. The DNA content in the SIS patch was 53.9 ± 10.9 ng/mg dry weight. Both the histological score and ultimate load to failure increased in a time-dependent manner in both groups, with no significant differences between the SIS and FL groups at 12 weeks.
Conclusion
Repair of a large supraspinatus tendon defect using a reinforced, low immunogenic, SIS patch achieves similar effects as autologous FL in a rabbit model. This novel patch might be useful to be employed as a structural tissue replacement in medical activities.
Collapse