1
|
Bisicchia E, Sasso V, Molinari M, Viscomi MT. Plasticity of microglia in remote regions after focal brain injury. Semin Cell Dev Biol 2019; 94:104-111. [PMID: 30703556 DOI: 10.1016/j.semcdb.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
The CNS is endowed with an intrinsic ability to recover from and adapt secondary compensatory mechanisms to injury. The basis of recovery stems from brain plasticity, defined as the brain's ability to make adaptive changes on structural and functional levels, ranging from molecular, synaptic, and cellular changes in response to alterations in their environment. In this multitude of responses, microglia have an active role and contribute to brain plasticity through their dynamic responses. This review will provide an overview of microglial responses in the context of acute CNS injury and their function in post-traumatic repair and assess the changes that are induced by damage in remote areas from, but functionally connected to, the primary site of injury. In the second section, we highlight the effects of several therapeutic approaches, with particular interest paid to specialized pro-resolving lipid mediators, in modulating microglial responses in remote regions and enhancing long-term functional recovery via suppression of neurodegenerative cascades that are induced by damage, which may contribute to a translational bridge from bench to bedside.
Collapse
Affiliation(s)
- Elisa Bisicchia
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valeria Sasso
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marco Molinari
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Teresa Viscomi
- Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del S. Cuore, Rome, Italy.
| |
Collapse
|
2
|
Bisicchia E, Sasso V, Catanzaro G, Leuti A, Besharat ZM, Chiacchiarini M, Molinari M, Ferretti E, Viscomi MT, Chiurchiù V. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs. Mol Neurobiol 2018; 55:6894-6905. [PMID: 29357041 DOI: 10.1007/s12035-018-0889-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.
Collapse
Affiliation(s)
- Elisa Bisicchia
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Valeria Sasso
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | - Alessandro Leuti
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | | | | | - Marco Molinari
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | | - Valerio Chiurchiù
- IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, 00143, Rome, Italy. .,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Abdul-Muneer PM, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 2014; 51:966-79. [PMID: 24865512 PMCID: PMC9420084 DOI: 10.1007/s12035-014-8752-3] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death in the young age group and leads to persisting neurological impairment in many of its victims. It may result in permanent functional deficits because of both primary and secondary damages. This review addresses the role of oxidative stress in TBI-mediated secondary damages by affecting the function of the vascular unit, changes in blood-brain barrier (BBB) permeability, posttraumatic edema formation, and modulation of various pathophysiological factors such as inflammatory factors and enzymes associated with trauma. Oxidative stress plays a major role in many pathophysiologic changes that occur after TBI. In fact, oxidative stress occurs when there is an impairment or inability to balance antioxidant production with reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels. ROS directly downregulate proteins of tight junctions and indirectly activate matrix metalloproteinases (MMPs) that contribute to open the BBB. Loosening of the vasculature and perivascular unit by oxidative stress-induced activation of MMPs and fluid channel aquaporins promotes vascular or cellular fluid edema, enhances leakiness of the BBB, and leads to progression of neuroinflammation. Likewise, oxidative stress activates directly the inflammatory cytokines and growth factors such as IL-1β, tumor necrosis factor-α (TNF-α), and transforming growth factor-beta (TGF-β) or indirectly by activating MMPs. In another pathway, oxidative stress-induced degradation of endothelial vascular endothelial growth factor receptor-2 (VEGFR-2) by MMPs leads to a subsequent elevation of cellular/serum VEGF level. The decrease in VEGFR-2 with a subsequent increase in VEGF-A level leads to apoptosis and neuroinflammation via the activation of caspase-1/3 and IL-1β release.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA,
| | | | | |
Collapse
|
4
|
Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 2014; 50:368-89. [PMID: 24442481 DOI: 10.1007/s12035-013-8629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy-all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.
Collapse
Affiliation(s)
- Maria Teresa Viscomi
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 65, 00143, Rome, Italy,
| | | |
Collapse
|
5
|
Clond MA, Lee BS, Yu JJ, Singer MB, Amano T, Lamb AW, Drazin D, Kateb B, Ley EJ, Yu JS. Reactive oxygen species-activated nanoprodrug of Ibuprofen for targeting traumatic brain injury in mice. PLoS One 2013; 8:e61819. [PMID: 23637912 PMCID: PMC3634829 DOI: 10.1371/journal.pone.0061819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/13/2013] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI) is an enormous public health problem, with 1.7 million new cases of TBI recorded annually by the Centers for Disease Control. However, TBI has proven to be an extremely challenging condition to treat. Here, we apply a nanoprodrug strategy in a mouse model of TBI. The novel nanoprodrug contains a derivative of the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen in an emulsion with the antioxidant α-tocopherol. The ibuprofen derivative, Ibu2TEG, contains a tetra ethylene glycol (TEG) spacer consisting of biodegradable ester bonds. The biodegradable ester bonds ensure that the prodrug molecules break down hydrolytically or enzymatically. The drug is labeled with the fluorescent reporter Cy5.5 using nonbiodegradable bonds to 1-octadecanethiol, allowing us to reliably track its accumulation in the brain after TBI. We delivered a moderate injury using a highly reproducible mouse model of closed-skull controlled cortical impact to the parietal region of the cortex, followed by an injection of the nanoprodrug at a dose of 0.2 mg per mouse. The blood brain barrier is known to exhibit increased permeability at the site of injury. We tested for accumulation of the fluorescent drug particles at the site of injury using confocal and bioluminescence imaging of whole brains and brain slices 36 hours after administration. We demonstrated that the drug does accumulate preferentially in the region of injured tissue, likely due to an enhanced permeability and retention (EPR) phenomenon. The use of a nanoprodrug approach to deliver therapeutics in TBI represents a promising potential therapeutic modality.
Collapse
Affiliation(s)
- Morgan A. Clond
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Bong-Seop Lee
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jeffrey J. Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew B. Singer
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Takayuki Amano
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Alexander W. Lamb
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Doniel Drazin
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Babak Kateb
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Eric J. Ley
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - John S. Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Oddi S, Latini L, Viscomi MT, Bisicchia E, Molinari M, Maccarrone M. Distinct regulation of nNOS and iNOS by CB2 receptor in remote delayed neurodegeneration. J Mol Med (Berl) 2011; 90:371-87. [DOI: 10.1007/s00109-011-0846-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/16/2011] [Accepted: 12/07/2011] [Indexed: 12/13/2022]
|
7
|
Wu Y, Lousberg EL, Moldenhauer LM, Hayball JD, Robertson SA, Coller JK, Watkins LR, Somogyi AA, Hutchinson MR. Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment. Brain Behav Immun 2011; 25 Suppl 1:S155-64. [PMID: 21276848 DOI: 10.1016/j.bbi.2011.01.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 11/18/2022] Open
Abstract
Alcohol-induced proinflammatory central immune signaling has been implicated in the chronic neurotoxic actions of alcohol, although little work has examined if these non-neuronal actions contribute to the acute behavioral responses elicited by alcohol administration. The present study examined if acute alcohol-induced sedation (loss of righting reflex, sleep time test) and motor impairment (rotarod test) were influenced by acute alcohol-induced microglial-dependent central immune signaling. Inhibition of acute alcohol-induced central immune signaling, through the reduction of proinflammatory microglial activation with minocycline, or by blocking interleukin-1 (IL-1) receptor signaling using IL-1 receptor antagonist (IL-1ra), reduced acute alcohol-induced sedation in mice. Mice treated with IL-1ra recovered faster from acute alcohol-induced motor impairment than control animals. However, minocycline led to greater motor impairment induced by alcohol, implicating different mechanisms in alcohol-induced sedation and motor impairment. At a cellular level, IκBα protein levels in mixed hippocampal cells responded rapidly to alcohol in a time-dependent manner, and both minocycline and IL-1ra attenuated the elevated levels of IκBα protein by alcohol. Collectively these data suggest that alcohol is capable of rapid modification of proinflammatory immune signaling in the brain and this contributes significantly to the pharmacology of alcohol.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Blotting, Western
- Cells, Cultured
- Dose-Response Relationship, Drug
- Ethanol/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Interleukin-1/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Microglia/drug effects
- Microglia/metabolism
- Minocycline/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Neurons/drug effects
- Neurons/metabolism
- Phosphorylation/drug effects
- Phosphorylation/physiology
- Receptors, Interleukin-1 Type I/antagonists & inhibitors
- Receptors, Interleukin-1 Type I/metabolism
- Reflex, Righting/drug effects
- Reflex, Righting/physiology
- Rotarod Performance Test
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sleep/drug effects
- Sleep/physiology
Collapse
Affiliation(s)
- Yue Wu
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ahn SK, Hong S, Park YM, Lee WT, Park KA, Lee JE. Effects of agmatine on hypoxic microglia and activity of nitric oxide synthase. Brain Res 2010; 1373:48-54. [PMID: 21145312 DOI: 10.1016/j.brainres.2010.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 01/06/2023]
Abstract
Microglia are the resident macrophages of CNS and play a crucial role in maintaining homeostasis against various neuronal injuries. However, excessive activation of microglia may destroy healthy neurons as well as damaged neurons. We investigated neuroprotective effects of amgatine on hypoxic microglia using in vitro and in vivo models for transient hypoxia. For in vitro study, BV2 immortalized murine microglia were incubated with or without 100 μM of agmatine in a closed anaerobic chamber for 2h. After recovery in normoxic condition for 20 h, cell viability and the amount of nitrite generation were determined. For in vivo study, 100mg/kg of agmatine or equivalent volume of saline was intraperitoneally administered, and the left middle cerebral artery of adult male Sprague-Dawley rats was occluded for 90 min. After 24h from occlusion, the cortex and striatum of the forebrains was evaluated to check the immunoreactivity with a microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), and inducible nitric oxide synthase (iNOS). Results showed that agmatine attenuated hypoxia-induced cytotoxicity and nitrite production by BV2 microglia. Agmatine also decreased the activities of microglia and NOS induced by transient middle cerebral artery occlusion. Finally, our findings reveal that agmatine may reduce microglial damages caused by transient hypoxia and suggest that agmatine may lead to a novel therapeutic strategy for hypoxic neuronal injuries.
Collapse
Affiliation(s)
- Soo Kyung Ahn
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
9
|
Viscomi M, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M. The endocannabinoid system: A new entry in remote cell death mechanisms. Exp Neurol 2010; 224:56-65. [DOI: 10.1016/j.expneurol.2010.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
10
|
Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 2010; 8:41-61. [PMID: 20808545 PMCID: PMC2866461 DOI: 10.2174/157015910790909476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023] Open
Abstract
Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development.
Collapse
Affiliation(s)
- D Marmolino
- Laboratoire de Neurologie Expèrimentale ULB-Erasme, Brussels, Belgium.
| | | |
Collapse
|
11
|
Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. THE CEREBELLUM 2009; 8:137-54. [PMID: 19669387 DOI: 10.1007/s12311-009-0127-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebellar ataxias represent a group of disabling neurological disorders. Our understanding of the pathogenesis of cerebellar ataxias is continuously expanding. A considerable number of laboratory animals with neurological mutations have been reported and numerous relevant animal models mimicking the phenotype of cerebellar ataxias are becoming available. These models greatly help dissecting the numerous mechanisms of cerebellar dysfunction, a major step for the assessment of therapeutics targeting a given deleterious pathway and for the screening of old or newly synthesized chemical compounds. Nevertheless, differences between animal models and human disorders should not be overlooked and difficulties in terms of characterization should not be occulted. The identification of the mutations of many hereditary ataxias, the development of valuable animal models, and the recent identifications of the molecular mechanisms underlying cerebellar disorders represent a combination of key factors for the development of anti-ataxic innovative therapies. It is anticipated that the twenty-first century will be the century of effective therapies in the field of cerebellar ataxias. The animal models are a cornerstone to reach this goal.
Collapse
|
12
|
Viscomi MT, Florenzano F, Latini L, Molinari M. Remote cell death in the cerebellar system. THE CEREBELLUM 2009; 8:184-91. [PMID: 19387761 DOI: 10.1007/s12311-009-0107-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/31/2009] [Indexed: 12/17/2022]
Abstract
Functional impairment after focal CNS lesion is highly dependent on damage that occurs in regions that are remote but functionally connected to the primary lesion site. This pattern is particularly evident in the cerebellar system, in which functional interactions between the cerebellar cortex, deep cerebellar nuclei, and precerebellar stations are of paramount importance. Diffuse degeneration after development of a focal CNS lesion has been associated with poor outcomes in several pathologies, such as stroke, multiple sclerosis, and brain trauma. A greater understanding of the mechanisms that underlie the spread of death signals from focal lesions, however, can aid in identifying a neuroprotective approach for CNS pathologies. To this end, studies on degenerative mechanisms in the inferior olive and pontine nuclei after focal cerebellar damage have been a valuable asset in which pharmacological approaches have been tested. In this review, we focus on mechanisms of remote cell death in cerebellar circuits, analyzing the neuroprotective effects of inflammation-modulating drugs in particular.
Collapse
Affiliation(s)
- M T Viscomi
- Experimental Neurorehabilitation Lab, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | | | | | | |
Collapse
|