1
|
Karpova A, Aly AAA, Marosi EL, Mikulovic S. Fiber-based in vivo imaging: unveiling avenues for exploring mechanisms of synaptic plasticity and neuronal adaptations underlying behavior. NEUROPHOTONICS 2024; 11:S11507. [PMID: 38390518 PMCID: PMC10883581 DOI: 10.1117/1.nph.11.s1.s11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
In recent decades, various subfields within neuroscience, spanning molecular, cellular, and systemic dimensions, have significantly advanced our understanding of the elaborate molecular and cellular mechanisms that underpin learning, memory, and adaptive behaviors. There have been notable advancements in imaging techniques, particularly in reaching superficial brain structures. This progress has led to their widespread adoption in numerous laboratories. However, essential physiological and cognitive processes, including sensory integration, emotional modulation of motivated behavior, motor regulation, learning, and memory consolidation, are intricately encoded within deeper brain structures. Hence, visualization techniques such as calcium imaging using miniscopes have gained popularity for studying brain activity in unrestrained animals. Despite its utility, miniscope technology is associated with substantial brain tissue damage caused by gradient refractive index lens implantation. Furthermore, its imaging capabilities are primarily confined to the neuronal somata level, thus constraining a comprehensive exploration of subcellular processes underlying adaptive behaviors. Consequently, the trajectory of neuroscience's future hinges on the development of minimally invasive optical fiber-based endo-microscopes optimized for cellular, subcellular, and molecular imaging within the intricate depths of the brain. In pursuit of this goal, select research groups have invested significant efforts in advancing this technology. In this review, we present a perspective on the potential impact of this innovation on various aspects of neuroscience, enabling the functional exploration of in vivo cellular and subcellular processes that underlie synaptic plasticity and the neuronal adaptations that govern behavior.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ahmed A. A. Aly
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
| | - Endre Levente Marosi
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
| | - Sanja Mikulovic
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
- German Centre for Mental Health (DZPG), Magdeburg, Germany
| |
Collapse
|
2
|
Bossi S, Daniel H, McLean H. Interplay between metabotropic glutamate type 4 and adenosine type 1 receptors modulate synaptic transmission in the cerebellar cortex. Front Pharmacol 2024; 15:1406238. [PMID: 39211784 PMCID: PMC11358600 DOI: 10.3389/fphar.2024.1406238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored. To bridge this gap, our study delves into how mGlu4 receptor activity influences A1 receptor-mediated alterations in excitatory transmission. Employing a combination of whole-cell patch clamp recordings of Purkinje cells and parallel fiber presynaptic fluorometric calcium measurements in acute rat and mouse cerebellar cortical slices, our results reveal functional interactions between these receptor types. These findings hold implications for understanding potential roles of these presynaptic receptors in neuroprotection during pathophysiological conditions characterized by elevated glutamate and adenosine levels.
Collapse
Affiliation(s)
- Simon Bossi
- *Correspondence: Simon Bossi, ; Heather McLean,
| | | | - Heather McLean
- Institut des Neurosciences (NeuroPSI) UMR9197 CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
3
|
Ho S, Lajaunie R, Lerat M, Le M, Crépel V, Loulier K, Livet J, Kessler JP, Marcaggi P. A stable proportion of Purkinje cell inputs from parallel fibers are silent during cerebellar maturation. Proc Natl Acad Sci U S A 2021; 118:e2024890118. [PMID: 34740966 PMCID: PMC8609448 DOI: 10.1073/pnas.2024890118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Cerebellar Purkinje neurons integrate information transmitted at excitatory synapses formed by granule cells. Although these synapses are considered essential sites for learning, most of them appear not to transmit any detectable electrical information and have been defined as silent. It has been proposed that silent synapses are required to maximize information storage capacity and ensure its reliability, and hence to optimize cerebellar operation. Such optimization is expected to occur once the cerebellar circuitry is in place, during its maturation and the natural and steady improvement of animal agility. We therefore investigated whether the proportion of silent synapses varies over this period, from the third to the sixth postnatal week in mice. Selective expression of a calcium indicator in granule cells enabled quantitative mapping of presynaptic activity, while postsynaptic responses were recorded by patch clamp in acute slices. Through this approach and the assessment of two anatomical features (the distance that separates adjacent planar Purkinje dendritic trees and the synapse density), we determined the average excitatory postsynaptic potential per synapse. Its value was four to eight times smaller than responses from paired recorded detectable connections, consistent with over 70% of synapses being silent. These figures remained remarkably stable across maturation stages. According to the proposed role for silent synapses, our results suggest that information storage capacity and reliability are optimized early during cerebellar maturation. Alternatively, silent synapses may have roles other than adjusting the information storage capacity and reliability.
Collapse
Affiliation(s)
- Shu Ho
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France
| | - Rebecca Lajaunie
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Marion Lerat
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Mickaël Le
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Crépel
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Jean-Pierre Kessler
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille 13288, France
| | - Païkan Marcaggi
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France;
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
- Unité de Neurobiologie des Canaux Ioniques et de la Synapse, UMR 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| |
Collapse
|
4
|
Gilbert M, Chris Miall R. How and Why the Cerebellum Recodes Input Signals: An Alternative to Machine Learning. Neuroscientist 2021; 28:206-221. [PMID: 33559532 PMCID: PMC9136479 DOI: 10.1177/1073858420986795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mossy fiber input to the cerebellum is received by granule cells where it is thought to be recoded into internal signals received by Purkinje cells, which alone carry the output of the cerebellar cortex. In any neural network, variables are contained in groups of signals as well as signals themselves—which cells are active and how many, for example, and statistical variables coded in rates, such as the mean and range, and which rates are strongly represented, in a defined population. We argue that the primary function of recoding is to confine translation to an effect of some variables and not others—both where input is recoded into internal signals and the translation downstream of internal signals into an effect on Purkinje cells. The cull of variables is harsh. Internal signaling is group coded. This allows coding to exploit statistics for a reliable and precise effect despite needing to work with high-dimensional input which is a highly unpredictably variable. An important effect is to normalize eclectic input signals, so that the basic, repeating cerebellar circuit, preserved across taxa, does not need to specialize (within regional variations). With this model, there is no need to slavishly conserve or compute data coded in single signals. If we are correct, a learning algorithm—for years, a mainstay of cerebellar modeling—would be redundant.
Collapse
Affiliation(s)
- Mike Gilbert
- School of Psychology, University of Birmingham, Birmingham, UK
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Phase-Locking Requires Efficient Ca 2+ Extrusion at the Auditory Hair Cell Ribbon Synapse. J Neurosci 2021; 41:1625-1635. [PMID: 33446517 DOI: 10.1523/jneurosci.1324-18.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/25/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2022] Open
Abstract
Proper perception of sounds in the environment requires auditory signals to be encoded with extraordinary temporal precision up to tens of microseconds, but how it originates from the hearing organs in the periphery is poorly understood. In particular, sound-evoked spikes in auditory afferent fibers in vivo are phase-locked to sound frequencies up to 5 kHz, but it is not clear how hair cells can handle intracellular Ca2+ changes with such high speed and efficiency. In this study, we combined patch-clamp recording and two-photon Ca2+ imaging to examine Ca2+ dynamics in hair cell ribbon synapses in the bullfrog amphibian papilla of both sexes. We found that Ca2+ clearance from single synaptic ribbons followed a double exponential function, and the weight of the fast component, but not the two time constants, was significantly reduced for prolonged stimulation, and during inhibition of the plasma membrane Ca2+ ATPase (PMCA), the mitochondrial Ca2+ uptake (MCU), or the sarcolemma/endoplasmic reticulum Ca2+ ATPase (SERCA), but not the Na+/Ca2+ exchanger (NCX). Furthermore, we found that both the basal Ca2+ level and the Ca2+ rise during sinusoidal stimulation were significantly increased by inhibition of PMCA, MCU, or SERCA. Consistently, phase-locking of synaptic vesicle releases from hair cells was also significantly reduced by blocking PMCA, MCU, or SERCA, but not NCX. We conclude that, in addition to fast diffusion mediated by mobile Ca2+ buffer, multiple Ca2+ extrusion pumps are required for phase-locking at the auditory hair cell ribbon synapse.SIGNIFICANCE STATEMENT Hair cell synapses can transmit sound-driven signals precisely in the kHz range. However, previous studies of Ca2+ handling in auditory hair cells have often been conducted in immature hair cells, with elevated extracellular Ca2+ concentration, or through steady-state stimulation that may not be physiologically relevant. Here we examine Ca2+ clearance from hair cell synaptic ribbons in a fully mature preparation at physiological concentration of external Ca2+ and at physiological temperature. By stimulating hair cells with sinusoidal voltage commands that mimic pure sound tones, we recapitulated the phase-locking of hair cell exocytosis with an in vitro approach. This allowed us to reveal the Ca2+ extrusion mechanisms that are required for phase-locking at auditory hair cell ribbon synapses.
Collapse
|
6
|
Chamberland S, Timofeeva Y, Evstratova A, Norman CA, Volynski K, Tóth K. Slow-decaying presynaptic calcium dynamics gate long-lasting asynchronous release at the hippocampal mossy fiber to CA3 pyramidal cell synapse. Synapse 2020; 74:e22178. [PMID: 32598500 PMCID: PMC7685170 DOI: 10.1002/syn.22178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF–CA3 synapse. We found that asynchronous release at MF–CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst‐evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q‐type voltage‐gated Ca2+ channels, while the contribution of N‐type VGCCs was limited. Overall, our results uncover the determinants of long‐lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.
Collapse
Affiliation(s)
- Simon Chamberland
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK.,Centre for Complexity Science, University of Warwick, Coventry, UK.,University College London Institute of Neurology, University College London, London, UK
| | - Alesya Evstratova
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Christopher A Norman
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, UK
| | - Kirill Volynski
- University College London Institute of Neurology, University College London, London, UK
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F. Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing. eLife 2019; 8:41586. [PMID: 31081751 PMCID: PMC6533085 DOI: 10.7554/elife.41586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Information processing by cerebellar molecular layer interneurons (MLIs) plays a crucial role in motor behavior. MLI recruitment is tightly controlled by the profile of short-term plasticity (STP) at granule cell (GC)-MLI synapses. While GCs are the most numerous neurons in the brain, STP diversity at GC-MLI synapses is poorly documented. Here, we studied how single MLIs are recruited by their distinct GC inputs during burst firing. Using slice recordings at individual GC-MLI synapses of mice, we revealed four classes of connections segregated by their STP profile. Each class differentially drives MLI recruitment. We show that GC synaptic diversity is underlain by heterogeneous expression of synapsin II, a key actor of STP and that GC terminals devoid of synapsin II are associated with slow MLI recruitment. Our study reveals that molecular, structural and functional diversity across GC terminals provides a mechanism to expand the coding range of MLIs.
Collapse
Affiliation(s)
- Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Yannick Bailly
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France.,Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Eikermann-Haerter K, Arbel-Ornath M, Yalcin N, Yu ES, Kuchibhotla KV, Yuzawa I, Hudry E, Willard CR, Climov M, Keles F, Belcher AM, Sengul B, Negro A, Rosen IA, Arreguin A, Ferrari MD, van den Maagdenberg AMJM, Bacskai BJ, Ayata C. Abnormal synaptic Ca(2+) homeostasis and morphology in cortical neurons of familial hemiplegic migraine type 1 mutant mice. Ann Neurol 2015; 78:193-210. [PMID: 26032020 DOI: 10.1002/ana.24449] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Migraine is among the most common and debilitating neurological conditions. Familial hemiplegic migraine type 1 (FHM1), a monogenic migraine subtype, is caused by gain-of-function of voltage-gated CaV 2.1 calcium channels. FHM1 mice carry human pathogenic mutations in the α1A subunit of CaV 2.1 channels and are highly susceptible to cortical spreading depression (CSD), the electrophysiologic event underlying migraine aura. To date, however, the mechanism underlying increased CSD/migraine susceptibility remains unclear. METHODS We employed in vivo multiphoton microscopy of the genetically encoded Ca(2+)-indicator yellow cameleon to investigate synaptic morphology and [Ca(2+)]i in FHM1 mice. To study CSD-induced cerebral oligemia, we used in vivo laser speckle flowmetry and multimodal imaging. With electrophysiologic recordings, we investigated the effect of the CaV 2.1 gating modifier tert-butyl dihydroquinone on CSD in vivo. RESULTS FHM1 mutations elevate neuronal [Ca(2+)]i and alter synaptic morphology as a mechanism for enhanced CSD susceptibility that we were able to normalize with a CaV 2.1 gating modifier in hyperexcitable FHM1 mice. At the synaptic level, axonal boutons were larger, and dendritic spines were predominantly of the mushroom type, which both provide a structural correlate for enhanced neuronal excitability. Resting neuronal [Ca(2+)]i was elevated in FHM1, with loss of compartmentalization between synapses and neuronal shafts. The percentage of calcium-overloaded neurons was increased. Neuronal [Ca(2+)]i surge during CSD was faster and larger, and post-CSD oligemia and hemoglobin desaturation were more severe in FHM1 brains. INTERPRETATION Our findings provide a mechanism for enhanced CSD susceptibility in hemiplegic migraine. Abnormal synaptic Ca(2+) homeostasis and morphology may contribute to chronic neurodegenerative changes as well as enhanced vulnerability to ischemia in migraineurs.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Michal Arbel-Ornath
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Nilufer Yalcin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Esther S Yu
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Kishore V Kuchibhotla
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Izumi Yuzawa
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Eloise Hudry
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Carli R Willard
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Mihail Climov
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Fatmagul Keles
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Arianna M Belcher
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Buse Sengul
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Andrea Negro
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Isaac A Rosen
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Andrea Arreguin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian J Bacskai
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
The ubiquitous nature of multivesicular release. Trends Neurosci 2015; 38:428-38. [PMID: 26100141 DOI: 10.1016/j.tins.2015.05.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/21/2022]
Abstract
'Simplicity is prerequisite for reliability' (E.W. Dijkstra [1]) Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing.
Collapse
|
10
|
Arancillo M, White JJ, Lin T, Stay TL, Sillitoe RV. In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J Neurophysiol 2014; 113:578-91. [PMID: 25355961 DOI: 10.1152/jn.00586.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories.
Collapse
Affiliation(s)
- Marife Arancillo
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Joshua J White
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Tao Lin
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Trace L Stay
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| |
Collapse
|
11
|
Activation of extrasynaptic NMDARs at individual parallel fiber-molecular layer interneuron synapses in cerebellum. J Neurosci 2013; 33:16323-33. [PMID: 24107963 DOI: 10.1523/jneurosci.1971-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NMDA receptors (NMDARs) expressed by cerebellar molecular layer interneurons (MLIs) are not activated by single exocytotic events but can respond to glutamate spillover following coactivation of adjacent parallel fibers (PFs), indicating that NMDARs are perisynaptic. Several types of synaptic plasticity rely on these receptors but whether they are activated at isolated synapses is not known. Using a combination of electrophysiological and optical recording techniques in acute slices of rat cerebellum, along with modeling, we find that repetitive activation of single PF-MLI synapses can activate NMDARs in MLIs. High-frequency stimulation, multivesicular release (MVR), or asynchronous release can each activate NMDARs. Frequency facilitation was found at all PF-MLI synapses but, while some showed robust MVR with increased release probability, most were limited to univesicular release. Together, these results reveal a functional diversity of PF synapses, which use different mechanisms to activate NMDARs.
Collapse
|
12
|
Malkinson G, Spira ME. Release properties of individual presynaptic boutons expressed during homosynaptic depression and heterosynaptic facilitation of the Aplysia sensorimotor synapse. Front Cell Neurosci 2013; 7:165. [PMID: 24068986 PMCID: PMC3781340 DOI: 10.3389/fncel.2013.00165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/05/2013] [Indexed: 01/23/2023] Open
Abstract
Much of what we know about the mechanisms underlying Homosynaptic Depression (HSD) and heterosynaptic facilitation is based on intracellular recordings of integrated postsynaptic potentials (PSPs). This methodological approach views the presynaptic apparatus as a single compartment rather than taking a more realistic representation reflecting the fact that it is made up of tens to hundreds of individual and independent Presynaptic Release Boutons (PRBs). Using cultured Aplysia sensorimotor synapses, we reexamined HSD and its dishabituation by imaging the release properties of individual PRBs. We find that the PRB population is heterogeneous and can be clustered into three groups: ~25% of the PRBs consistently release neurotransmitter throughout the entire habituation paradigm (35 stimuli, 0.05 Hz) and have a relatively high quantal content, 36% of the PRBs display intermittent failures only after the tenth stimulation, and 39% are low quantal-content PRBs that exhibit intermittent release failures from the onset of the habituation paradigm. 5HT-induced synaptic dishabituation by a single 5HT application was generated by the enhanced recovery of the quantal content of the habituated PRBs and did not involve the recruitment of new release boutons. The characterization of the PRB population as heterogeneous in terms of its temporal pattern of release-probability and quantal content provides new insights into the mechanisms underlying HSD and its dishabituation.
Collapse
Affiliation(s)
- Guy Malkinson
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
13
|
Santhakumar V, Meera P, Karakossian MH, Otis TS. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition. PLoS One 2013; 8:e72976. [PMID: 23977374 PMCID: PMC3747091 DOI: 10.1371/journal.pone.0072976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 07/23/2013] [Indexed: 01/04/2023] Open
Abstract
GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants.
Collapse
Affiliation(s)
- Vijayalakshmi Santhakumar
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
14
|
Roome CJ, Power EM, Empson RM. Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse. J Neurophysiol 2012; 109:1669-80. [PMID: 23255722 DOI: 10.1152/jn.00854.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sodium/calcium exchanger (NCX) is a widespread transporter that exchanges sodium and calcium ions across excitable membranes. Normally, NCX mainly operates in its "forward" mode, harnessing the electrochemical gradient of sodium ions to expel calcium. During membrane depolarization or elevated internal sodium levels, NCX can instead switch the direction of net flux to expel sodium and allow calcium entry. Such "reverse"-mode NCX operation is frequently implicated during pathological or artificially extended periods of depolarization, not during normal activity. We have used fast calcium imaging, mathematical simulation, and whole cell electrophysiology to study the role of NCX at the parallel fiber-to-Purkinje neuron synapse in the mouse cerebellum. We show that nontraditional, reverse-mode NCX activity boosts the amplitude and duration of parallel fiber calcium transients during short bursts of high-frequency action potentials typical of their behavior in vivo. Simulations, supported by experimental manipulations, showed that accumulation of intracellular sodium drove NCX into reverse mode. This mechanism fueled additional calcium influx into the parallel fibers that promoted synaptic transmission to Purkinje neurons for up to 400 ms after the burst. Thus we provide the first functional demonstration of transient and fast NCX-mediated calcium entry at a major central synapse. This unexpected contribution from reverse-mode NCX appears critical for shaping presynaptic calcium dynamics and transiently boosting synaptic transmission, and is likely to optimize the accuracy of cerebellar information transfer.
Collapse
Affiliation(s)
- Chris J Roome
- Department of Physiology, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
15
|
Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Front Neural Circuits 2012; 6:97. [PMID: 23248585 PMCID: PMC3518933 DOI: 10.3389/fncir.2012.00097] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/16/2012] [Indexed: 11/18/2022] Open
Abstract
The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input–output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor circuits.
Collapse
Affiliation(s)
- Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, CO, USA
| | | |
Collapse
|
16
|
Abstract
Intracellular calcium dynamics is critical for many functions of cerebellar granule cells (GrCs) including membrane excitability, synaptic plasticity, apoptosis, and regulation of gene transcription. Recent measurements of calcium responses in GrCs to depolarization and synaptic stimulation reveal spatial compartmentalization and heterogeneity within dendrites of these cells. However, the main determinants of local calcium dynamics in GrCs are still poorly understood. One reason is that there have been few published studies of calcium dynamics in intact GrCs in their native environment. In the absence of complete information, biophysically realistic models are useful for testing whether specific Ca(2+) handling mechanisms may account for existing experimental observations. Simulation results can be used to identify critical measurements that would discriminate between different models. In this review, we briefly describe experimental studies and phenomenological models of Ca(2+) signaling in GrC, and then discuss a particular biophysical model, with a special emphasis on an approach for obtaining information regarding the distribution of Ca(2+) handling systems under conditions of incomplete experimental data. Use of this approach suggests that Ca(2+) channels and fixed endogenous Ca(2+) buffers are highly heterogeneously distributed in GrCs. Research avenues for investigating calcium dynamics in GrCs by a combination of experimental and modeling studies are proposed.
Collapse
Affiliation(s)
- Elena È Saftenku
- Department of General Physiology of Nervous System, A. A. Bogomoletz Institute of Physiology, 4 Bogomoletz St., Kyiv 01024, Ukraine.
| |
Collapse
|
17
|
Manto M, De Zeeuw CI. Diversity and complexity of roles of granule cells in the cerebellar cortex. Editorial. THE CEREBELLUM 2012; 11:1-4. [PMID: 22396329 DOI: 10.1007/s12311-012-0365-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cerebellar granule cell, the most numerous neurons in the brain, forms the main excitatory neuron of the cerebellar cortical circuitry. Granule cells are synaptically connected with both mossy fibers and Golgi cells inside specialized structures called glomeruli, and thereby, they are subject to both feed-forward and feed-back inhibition. Their unique architecture with about four dendrites and a single axon ascending in the cerebellar cortex to bifurcate into two parallel fibers making synapses with Purkinje neurons has attracted numerous scientists. Recent advances show that they are much more than just relays of mossy fibers. They perform diverse and complex transformations in the spatiotemporal domain. This special issue highlights novel avenues in our understanding of the roles of this key neuronal population of the cerebellar cortex, ranging from developmental up to physiological and pathological points of view.
Collapse
|
18
|
Functional contributions of the plasma membrane calcium ATPase and the sodium–calcium exchanger at mouse parallel fibre to Purkinje neuron synapses. Pflugers Arch 2012; 465:319-31. [DOI: 10.1007/s00424-012-1172-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 11/26/2022]
|
19
|
Abstract
The well established anatomy of the cerebellar cortex has led to suggestions that cerebellar molecular layer interneurons laterally inhibit Purkinje cells. In support of the anatomical predictions, on-beam excitation and off-beam inhibition of Purkinje cells have been shown to occur when the surface of the cerebellum is electrically excited. Patchy excitation of Purkinje cells with flanking inhibition of sagittally oriented Purkinje cells have also been demonstrated following peripheral stimulation in vivo. To extend these observations, we mapped the functional connectivity between granule cells, molecular layer interneurons, and Purkinje cells in rats. Patches of granule cells were asynchronously activated by photostimulation to mimic their excitation by a mossy fiber as it occurs in vivo. We found with remarkable consistency that, in the sagittal orientation, granule cells elicit a stereotypic set of responses. Granule cells immediately underneath a Purkinje cell provide pure excitation. Granule cells positioned 340-400 μm laterally provided pure inhibition, consistent with the lateral inhibition proposed earlier. The net effect of exciting granule cells in between these two extremes was to provide a systematic change in the response of Purkinje cells, from net excitation to net inhibition moving laterally from the Purkinje cell. In contrast to the sagittal orientation, in the coronal orientation the organization of Purkinje cell responses with granule cell activation was remarkably different. Independent of the location of granule cells, within the 480 μm lateral distance examined, molecular layer interneurons reduced the strength of granule cell inputs to Purkinje cells to a comparable extent.
Collapse
|