1
|
Abbassian H, Ilaghi M, Amleshi RS, Whalley BJ, Shabani M. Modulation of CB1 cannabinoid receptor alters the electrophysiological properties of cerebellar Purkinje cells in harmaline-induced essential tremor. IBRO Neurosci Rep 2024; 17:196-206. [PMID: 39262634 PMCID: PMC11388168 DOI: 10.1016/j.ibneur.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
Essential tremor (ET) is one of the most common motor disorders with debilitating effects on the affected individuals. The endocannabinoid system is widely involved in cerebellar signaling. Therefore, modulation of cannabinoid-1 receptors (CB1Rs) has emerged as a novel target for motor disorders. In this study, we aimed to assess whether modulation of cannabinoid receptors (CBRs) could alter the electrophysiological properties of Purkinje cells (PCs) in the harmaline-induced ET model. Male Wistar rats were assigned to control, harmaline (30 mg/kg), CBR agonist WIN 55,212-2 (WIN; 1 mg/kg), CB1R antagonists AM251 (1 mg/kg) and rimonabant (10 mg/kg). Spontaneous activity and positive and negative evoked potentials of PCs were evaluated using whole-cell patch clamp recording. Findings demonstrated that harmaline exposure induced alterations in the spontaneous and evoked firing behavior of PCs, as evidenced by a significant decrease in the mean number of spikes and half-width of action potential in spontaneous activity. WIN administration exacerbated the electrophysiological function of PCs, particularly in the spontaneous activity of PCs. However, CB1R antagonists provided protective effects against harmaline-induced electrophysiological changes in the spontaneous activity of PCs. Our findings reinforce the pivotal role of the endocannabinoid system in the underlying electrophysiological mechanisms of cerebellar disorders and suggest that antagonism of CB1R might provide therapeutic utility.
Collapse
Affiliation(s)
- Hassan Abbassian
- Mashhad Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Ilaghi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saboori Amleshi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Benjamin Jason Whalley
- Department of Pharmacy, School of Chemistry, Food & Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK
- Revelstone Consulting LLC, 1001 New Jersey Ave SE, Washington, DC, 20003
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Sun Y, Geng J, Fan Y, Li Y, Zhong Y, Cai J, Liu X, Wang S, Gong Y, Chang C, Yang Y, Fan C. A Non-Invasive and DNA-free Approach to Upregulate Mammalian Voltage-Gated Calcium Channels and Neuronal Calcium Signaling via Terahertz Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405436. [PMID: 39435751 DOI: 10.1002/advs.202405436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/22/2024] [Indexed: 10/23/2024]
Abstract
Mammalian voltage-gated calcium channels (CaV) play critical roles in cardiac excitability, synaptic transmission, and gene transcription. Dysfunctions in CaV are implicated in a variety of cardiac and neurodevelopmental disorders. Current pharmacological approaches to enhance CaV activity are limited by off-target effects, drug metabolism issues, cytotoxicity, and imprecise modulation. Additionally, genetically-encoded channel activators and optogenetic tools are restricted by gene delivery challenges and biosafety concerns. Here a novel terahertz (THz) wave-based method to upregulate CaV1.2, a key subtype of CaV, and boost CaV1-mediated Ca2+ signaling in neurons without introducing exogenous DNA is presented. Using molecular dynamics simulations, it is shown that 42.5 THz (7.05 µm, 1418 cm-1) waves enhance Ca2+ conductance in CaV1.2 by resonating with the stretching mode of the -COO- group in the selectivity filter. Electrophysiological recordings and Ca2+ imaging confirm that these waves rapidly, reversibly, and non-thermally increase calcium influx of CaV1.2 in HEK293 cells and induce acute Ca2+ signals in neurons. Furthermore, this irradiation upregulates critical CaV1 signals, including CREB phosphorylation and c-Fos expression, in vitro and in vivo, without raising significant biosafety risks. This DNA-free, non-invasive approach offers a promising approach for modulating CaV gating and Ca2+ signaling and treating diseases characterized by deficits in CaV functions.
Collapse
Affiliation(s)
- Yuankun Sun
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jinli Geng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Yu Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100072, P. R. China
| | - Yuan Zhong
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100072, P. R. China
| | - Jing Cai
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Xiaodong Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100072, P. R. China
- School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Yaxiong Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Wagle Shukla A. Reduction of neuronal hyperexcitability with modulation of T-type calcium channel or SK channel in essential tremor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:335-355. [PMID: 35750369 DOI: 10.1016/bs.irn.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor is one of the most prevalent movement disorders. Propranolol and primidone are the first-line pharmacological therapies. They provide symptomatic control in less than 50% of patients. Topiramate, alprazolam, clonazepam, gabapentin, and botulinum toxin injections are the next line of treatments. These medications lead to modest improvements and are therefore commonly used as add-on agents. Surgical therapies, including deep brain stimulation (DBS) surgery and focused ultrasound beam targeted to the thalamus, are considered for treating tremor refractory to medications and lead to greater than 75% improvements in tremor symptoms. However, DBS is a costly and an invasive procedure; some patients report tolerance to benefits. Focused ultrasound therapy leading to brain lesions is associated with a possibility for permanent clinical deficits. Therefore, research efforts to develop the next generation of oral medications with greater benefits and lesser adverse effects are warranted. There is considerable evidence that the increased functions of calcium channels (P/Q-type and T-type channels) and reduced functions of calcium-activated potassium channels (SK channels) located in the neuronal membranes lead to tremor oscillations. Consequently, many new pharmacological studies have targeted these channels to leverage better clinical outcomes. The current review will discuss the pathophysiology, the specific importance of these channels, and the early clinical experience of using compounds targeting these channels to treat essential tremor.
Collapse
Affiliation(s)
- Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
5
|
Thalamic T-Type Calcium Channels as Targets for Hypnotics and General Anesthetics. Int J Mol Sci 2022; 23:ijms23042349. [PMID: 35216466 PMCID: PMC8876360 DOI: 10.3390/ijms23042349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
General anesthetics mainly act by modulating synaptic inhibition on the one hand (the potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA receptors), but they can also have effects on numerous other proteins, receptors, and channels. The effects of general anesthetics on ion channels have been the subject of research since the publication of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus, where they control patterns of cellular excitability and thalamocortical oscillations during awake and sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5–4 Hz), by generating “window current” that contributes to the resting membrane potential. We posit that the role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics warrants consideration.
Collapse
|
6
|
Maneshian M, Nasirinezhad F, Mohammadi F, Behzadi M, Asadi-Shekaari M, Shabani M. Minocycline Mitigation of Tremor Syndrome and Defect of Cognitive and Balance Induced by Harmaline. Basic Clin Neurosci 2021; 12:255-268. [PMID: 34925722 PMCID: PMC8672663 DOI: 10.32598/bcn.12.2.1980.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction: Minocycline has anti-inflammatory, anti-apoptotic, and anti-oxidant effects. Preclinical data suggest that minocycline could be beneficial for treating common neurological disorders, including Parkinson disease and multiple sclerosis. Methods: In this study, the effects of minocycline on harmaline-induced motor and cognitive impairments were studied in male Wistar rats. The rats were divided into four groups of ten animals each. Harmaline was used for the induction of Essential Tremor (ET). Minocycline (90 mg/kg, IP) was administered 30 minutes before the saline or harmaline. Tremor intensity, spontaneous locomotor activity, passive avoidance memory, anxiety-related behaviors, and motor function were assessed in the rats. Results: The results showed that minocycline could recover tremor intensity and step width but failed to recuperate the motor balance. The memory impairments observed in harmaline-treated rats were somewhat reversed by administration of minocycline. The cerebellum and inferior olive nucleus were studied for neuronal degeneration using histochemistry and transmission electron microscopy techniques. Harmaline caused ultrastructural changes and neuronal cell loss in inferior olive and cerebellar Purkinje cells. Minocycline exhibited neuroprotective changes on cerebellar Purkinje cells and inferior olivary neurons. Conclusion: These results open new therapeutic perspectives for motor and memory impairments in ET. However, further studies are needed to clarify the exact mechanisms.
Collapse
Affiliation(s)
- Marzieh Maneshian
- Department of Physiology, Physiological Research Center, Iran University of Medical Sciences, Tehran, Iran.,Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, Physiological Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Characteristics of wearing-off and motor symptoms improved by safinamide adjunct therapy in patients with Parkinson's disease: A post hoc analysis of a Japanese phase 2/3 study. J Neurol Sci 2021; 434:120083. [PMID: 35007919 DOI: 10.1016/j.jns.2021.120083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Patients with Parkinson's disease (PD) experience various motor and non-motor symptoms. We conducted a post hoc analysis of a Japanese phase 2/3 study of safinamide (50 or 100 mg/day) in patients with Parkinson's disease and wearing-off to evaluate response according to background factors. Safinamide efficacy against major motor symptoms was also assessed. METHODS Multiple regression analyses in safinamide-treated patients (50 or 100 mg/day) assessed changes in daily ON-time without troublesome dyskinesia (hereafter referred to as ON-time) according to baseline clinical variables. Subgroup analyses by baseline Unified Parkinson's Disease Rating Scale (UPDRS) part III score were also conducted. We evaluated cardinal motor symptoms using the UPDRS. RESULTS In the multiple regression analysis, changes in ON-time were related to baseline non-motor symptoms (UPDRS part I score) and ON-time in the 50-mg group, but no relationships with non-motor symptoms were observed in the 100-mg group. Additionally, in the subgroup analysis of patients with more severe motor symptoms (UPDRS part III score > 20), a significant improvement in ON-time was observed only with 100 mg/day (p = 0.01). At both doses, safinamide significantly improved cardinal motor symptom scores (bradykinesia, rigidity, tremor, axial symptoms, and gait disturbances). CONCLUSIONS The observed response profile to the 50-mg/day dose may be related to baseline non-motor symptoms, but this was not true for the 100-mg/day dose. Both safinamide doses improved major motor symptoms in levodopa-treated patients with PD.
Collapse
|
8
|
Hara N, Morino H, Matsuda Y, Satoh K, Hashimoto K, Maruyama H, Kawakami H. Zonisamide can ameliorate the voltage-dependence alteration of the T-type calcium channel Ca V3.1 caused by a mutation responsible for spinocerebellar ataxia. Mol Brain 2020; 13:163. [PMID: 33243296 PMCID: PMC7690142 DOI: 10.1186/s13041-020-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Spinocerebellar ataxia (SCA) 42 is caused by a mutation in CACNA1G, which encodes the low voltage-gated calcium channel CaV3.1 (T-type). Patients with SCA42 exhibit a pure form of cerebellar ataxia. We encountered a patient with the p.Arg1715His mutation, suffering from intractable resting tremor, particularly head tremor. This symptom improved with the administration of low-dose of zonisamide (ZNS), a T-type calcium channel blocker effective for treating Parkinson’s disease and epilepsy. Previous electrophysiological studies showed that the voltage dependence of this mutant CaV3.1 was shifted toward the positive potential. This abnormal shift was considered a factor related to disease onset and symptoms. In this study, we performed whole-cell recordings of GFP-expressing HEK293T cells that expressed wild-type or mutant CaV3.1 and investigated the changes in the abnormal shift of voltage dependence of the mutant CaV3.1. The results showed that ZNS in an amount equivalent to the patient’s internal dose significantly ameliorated the abnormal shift in the mutant CaV3.1, giving values close to those in the wild-type. On the other hand, ZNS did not affect the voltage dependence of wild-type CaV3.1. Because CaV3.1 is known to be involved in tremogenesis, modulation of the voltage dependence of mutant CaV3.1 by ZNS might have contributed to improvement in the intractable tremor of our patient with SCA42. Moreover, efonidipine, another T-type calcium channel blocker, had no effect on tremors in our patient with SCA42 and did not improve the abnormal shift in the voltage dependence of the mutant CaV3.1. This indicates that ZNS is distinct from other T-type calcium channel blockers in terms of modulation of the voltage dependence of the mutant CaV3.1.
Collapse
Affiliation(s)
- Naoyuki Hara
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Kenichi Satoh
- The Center for Data Science Education and Research, Shiga University, 1-1-1 Banba, Hikone, Shiga, 522-8522, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| |
Collapse
|
9
|
Timic Stamenic T, Feseha S, Valdez R, Zhao W, Klawitter J, Todorovic SM. Alterations in Oscillatory Behavior of Central Medial Thalamic Neurons Demonstrate a Key Role of CaV3.1 Isoform of T-Channels During Isoflurane-Induced Anesthesia. Cereb Cortex 2020; 29:4679-4696. [PMID: 30715245 DOI: 10.1093/cercor/bhz002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 11/14/2022] Open
Abstract
Although the central medial nucleus (CeM) of the thalamus is an essential part of the arousal system for sleep and anesthesia initiation, the precise mechanisms that regulate its activity are not well studied. We examined the role of CaV3.1 isoform of T-type calcium channels (T-channels) in the excitability and rhythmic activity of CeM neurons during isoflurane (ISO)-induced anesthesia by using mouse genetics and selective pharmacology. Patch-clamp recordings taken from acute brain slices revealed that CaV3.1 channels in CeM are inhibited by prototypical volatile anesthetic ISO (250 and 500 μM) and selective T-channels blocker 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2). Both TTA-P2 and ISO attenuated tonic and burst firing modes, and hyperpolarized CeM neurons from wild type (WT) mice. These effects were greatly diminished or abolished in CaV3.1 null mice. Our ensuing in vivo local field potential (LFP) recordings from CeM indicated that the ability of TTA-P2 and anesthetic concentrations of ISO to promote δ oscillation was substantially weakened in CaV3.1 null mice. Furthermore, escalating ISO concentrations induced stronger burst-suppression LFP pattern in mutant than in WT mice. Our results demonstrate for the first time the importance of CaV3.1 channels in thalamocortical oscillations from the non-specific thalamic nuclei that underlie clinically important effects of ISO.
Collapse
Affiliation(s)
- Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Simon Feseha
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Valdez
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wanzhu Zhao
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.,Neuroscience Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Dahmardeh N, Shabani M, Basiri M, Kalantaripour TP, Asadi-Shekaari M. Functional Antagonism of Sphingosine-1-Phosphate Receptor 1 Prevents Harmaline-Induced Ultrastructural Alterations and Caspase-3 Mediated Apoptosis. Malays J Med Sci 2019; 26:28-38. [PMID: 31496891 PMCID: PMC6719891 DOI: 10.21315/mjms2019.26.4.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background There is a meaningful necessity for a targeted therapy of essential tremor (ET), as medications have not been developed specifically for ET. For nearly a century, many drugs have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline in male rats was investigated. Methods The animals were allotted into control dimethyl sulfoxide (DMSO), saline + harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24 h before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study by transmission electron microscopy (TEM) techniques. Results Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons. Conclusion These results suggest that FTY720 has potential efficacy for prevention of ET neurodegeneration and astrocytosis induced by harmaline in male rats.
Collapse
Affiliation(s)
- Narjes Dahmardeh
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Taj Pari Kalantaripour
- Department of Physiology, School of Medicine, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Papapetropoulos S, Lee MS, Boyer S, Newbold EJ. A Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial of CX-8998, a Selective Modulator of the T-Type Calcium Channel in Inadequately Treated Moderate to Severe Essential Tremor: T-CALM Study Design and Methodology for Efficacy Endpoint and Digital Biomarker Selection. Front Neurol 2019; 10:597. [PMID: 31244760 PMCID: PMC6579833 DOI: 10.3389/fneur.2019.00597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Essential tremor (ET) is a common, progressive neurological syndrome with bilateral upper-limb dysfunction of at least 3-year duration, with or without tremor in other body locations. This disorder has a negative impact on daily function and quality of life. A single oral therapy has been approved by FDA for ET. Off-label pharmacotherapies have inadequate efficacy and poor tolerability with high rates of patient dissatisfaction and discontinuation. Safe and efficacious pharmacotherapies are urgently needed to decrease tremor and improve daily living. T-CALM (Tremor-CAv3 modulation) protocol is designed to assess safety and efficacy of CX-8998, a selective modulator of the T-type calcium channel, for ET therapy. Methods/Design: T-CALM is a phase 2, proof of concept, randomized, double-blind, placebo-controlled trial. Titrated doses of CX-8998 to 10 mg BID or placebo will be administered for 28 days to moderate to severe ET patients who are inadequately treated with existing therapies. The primary endpoint will be change from baseline to day 28 of The Essential Tremor Rating Assessment Performance Subscale (TETRAS-PS). Secondary efficacy endpoints for clinician and patient perception of daily function will include TETRAS Activity of Daily Living (ADL), Quality of Life in Essential Tremor Questionnaire (QUEST), Clinical Global Impression-Improvement (CGI-I), Patient Global Impression of Change (PGIC), and Goal Attainment Scale (GAS). Kinesia One, Kinesia 360, and iMotor will biometrically evaluate motor function and tremor amplitude. Safety will be assessed by adverse events, physical and neurological exams and laboratory tests. Sample size of 43 patients per group is estimated to have 90% power to detect a 5.5-point difference between CX-8998 and placebo for TETRAS-PS. Efficacy analyses will be performed with covariance (ANCOVA) and 2-sided test at 0.05 significance level. Discussion: T-CALM has a unique design with physician rating scales, patient-focused questionnaires and scales and objective motor measurements to assess clinically meaningful and congruent efficacy. Patient perception of ET debilitation and therapy with CX-8998 will be key findings. Overall goal of T-CALM is generation of safety and efficacy data to support a go, no-go decision to further develop CX-8998 for ET. Design of T-CALM may guide future clinical studies of ET pharmacotherapies. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03101241
Collapse
|
12
|
Visa A, Shaikh S, Alza L, Herreros J, Cantí C. The Hard-To-Close Window of T-Type Calcium Channels. Trends Mol Med 2019; 25:571-584. [PMID: 31031178 DOI: 10.1016/j.molmed.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/03/2023]
Abstract
T-Type calcium channels (TTCCs) are key regulators of membrane excitability, which is the reason why TTCC pharmacology is subject to intensive research in the neurological and cardiovascular fields. TTCCs also play a role in cancer physiology, and pharmacological blockers such as tetralols and dihydroquinazolines (DHQs) reduce the viability of cancer cells in vitro and slow tumor growth in murine xenografts. However, the available compounds are better suited to blocking TTCCs in excitable membranes rather than TTCCs contributing window currents at steady potentials. Consistently, tetralols and dihydroquinazolines exhibit cytostatic/cytotoxic activities at higher concentrations than those required for TTCC blockade, which may involve off-target effects. Gene silencing experiments highlight the targetability of TTCCs, but further pharmacological research is required for TTCC blockade to become a chemotherapeutic option.
Collapse
Affiliation(s)
- Anna Visa
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Soni Shaikh
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Lía Alza
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Judit Herreros
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain
| | - Carles Cantí
- Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain.
| |
Collapse
|
13
|
Hara N, Nezu T, Kobatake K, Morino H, Kawakami H, Maruyama H. Treatment of intractable resting tremor of spinocerebellar ataxia 42 with zonisamide. J Neurol Sci 2019; 396:119-120. [DOI: 10.1016/j.jns.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
14
|
Abstract
INTRODUCTION T-type calcium channels are attractive targets for potential treatment of epilepsy inflammatory or neuropathic pain, insomnia, Parkinson's disease, and cancer. Three isoforms having different biophysical functions are expressed in peripheral and central nerve. Since the withdrawal of mibefradil, the first compound marketed for selective T-type calcium channel blockade, extensive efforts have been made to identify more selective T-type calcium channel blockers. AREAS COVERED This review covers the 43 patents describing 'organic small molecules as T-type calcium channel blockers'-published since 2012. The most recent similar patent review was published in 2011. Information from a recent review article and relevant research papers has been included, as well as biological data and clinical trial results where available. EXPERT OPINION Triazinone derivatives, carbazole compounds, and aryl triazole/imidazole amide derivatives display potent blockade activity α1H, α1G, and pan T-type calcium channel subtypes, respectively, though the specificity of the letter is still unsatisfactory. Nonetheless, improvements seen in the efficacy of compounds targeting α1H T-type calcium channels indicate significant progress. Ongoing clinical trials are for the candidates Z944 (Phase II) and ACT-709478 (Phase II) appear promising. These studies may lead to a new generation of inhibitors with higher selectivity, improved physicochemical properties, and reduced side effects.
Collapse
Affiliation(s)
- Ghilsoo Nam
- a Center for Neuro-Medicine , Brain Science Institute, Korea Institutes of Science and Technology (KIST) , Seoul , Republic of Korea.,b Division of Bio-Medical Science, KIST School , Korea University of Science and Technology Seoul , Seoul , Republic of Korea
| |
Collapse
|
15
|
Vasechkin SV, Levin OS. [Diagnosis and management of essential tremor]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:64-72. [PMID: 30346436 DOI: 10.17116/jnevro201811806264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Essential tremor (ET) is the most common extrapyramidal disease and one of the most frequent neurological diseases. The main presentation of ET is a progressive bilateral (kinetic-postural) hand tremor. The prevalence in people over 65 years is 5%, it increases with age up to 22% in people over 95 years. About half of patients with ET have family history. The modern concepts of the pathogenesis, clinical features and differential diagnosis are considered. Possible methods of medical and surgical management are described.
Collapse
Affiliation(s)
- S V Vasechkin
- Centre of Extrapyramidal Diseases Department of Neurology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - O S Levin
- Centre of Extrapyramidal Diseases Department of Neurology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
16
|
Affiliation(s)
- Dietrich Haubenberger
- From the Clinical Trials Unit, Office of the Clinical Director (D.H.), and the Human Motor Control Section, Medical Neurology Branch (M.H.), National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Mark Hallett
- From the Clinical Trials Unit, Office of the Clinical Director (D.H.), and the Human Motor Control Section, Medical Neurology Branch (M.H.), National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Garcia-Caballero A, Zhang FX, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW. T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 2018; 11:24. [PMID: 29720258 PMCID: PMC5930937 DOI: 10.1186/s13041-018-0368-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charged cytosolic region present in the carboxy-terminus of T-type calcium channels. Deletion of this stretch of amino acids decreased binding of Cav3.1 and Cav3.2 calcium channels to spectrin (α/β) and ankyrin B and notably also reduced T-type whole cell current densities in expression systems. Furthermore, fluorescence recovery after photobleaching analysis of mutant channels lacking the proximal C-terminus region revealed reduced recovery of both Cav3.1 and Cav3.2 mutant channels in hippocampal neurons. Knockdown of spectrin α and ankyrin B decreased the density of endogenous Cav3.2 in hippocampal neurons. These findings reveal spectrin (α/β) / ankyrin B cytoskeletal and signaling proteins as key regulators of T-type calcium channels expressed in the nervous system.
Collapse
Affiliation(s)
- Agustin Garcia-Caballero
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Victoria Hodgkinson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Junting Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Stuart Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Jennifer Kass
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Sascha Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
18
|
Drion G, Dethier J, Franci A, Sepulchre R. Switchable slow cellular conductances determine robustness and tunability of network states. PLoS Comput Biol 2018; 14:e1006125. [PMID: 29684009 PMCID: PMC5940245 DOI: 10.1371/journal.pcbi.1006125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 05/08/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Neuronal information processing is regulated by fast and localized fluctuations of brain states. Brain states reliably switch between distinct spatiotemporal signatures at a network scale even though they are composed of heterogeneous and variable rhythms at a cellular scale. We investigated the mechanisms of this network control in a conductance-based population model that reliably switches between active and oscillatory mean-fields. Robust control of the mean-field properties relies critically on a switchable negative intrinsic conductance at the cellular level. This conductance endows circuits with a shared cellular positive feedback that can switch population rhythms on and off at a cellular resolution. The switch is largely independent from other intrinsic neuronal properties, network size and synaptic connectivity. It is therefore compatible with the temporal variability and spatial heterogeneity induced by slower regulatory functions such as neuromodulation, synaptic plasticity and homeostasis. Strikingly, the required cellular mechanism is available in all cell types that possess T-type calcium channels but unavailable in computational models that neglect the slow kinetics of their activation. Brain information processing involves electrophysiological signals at multiple temporal and spatial timescales, from the single neuron level to whole brain areas. A fast and local control of these signals by neurochemicals called neuromodulators is essential in complex tasks such as movement initiation and attentional focus. The neuromodulators act at the cellular scale to control signals that propagate at potentially much larger scales. The present paper highlights the critical role of a cellular switch of excitability for the fast and localized control of cellular and network states. By turning ON and OFF the cellular switch, neuromodulators can robustly switch large populations between distinct network states. We stress the importance of controlling the switch at a cellular level and independently of the connectivity to allow for tunable spatiotemporal signatures of the network states.
Collapse
Affiliation(s)
- Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Julie Dethier
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Alessio Franci
- National Autonomous University of Mexico, Science Faculty, Department of Mathematics, Coyoacán, D.F., México
| | - Rodolphe Sepulchre
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Cytosolic ATP Relieves Voltage-Dependent Inactivation of T-Type Calcium Channels and Facilitates Excitability of Neurons in the Rat Central Medial Thalamus. eNeuro 2018; 5:eN-NWR-0016-18. [PMID: 29468189 PMCID: PMC5819668 DOI: 10.1523/eneuro.0016-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
The central medial nucleus (CeM) is a part of the intralaminar thalamus, which is involved in the control of arousal and sensory processing. However, ionic conductances and mechanisms that regulate the activity of the CeM are not well studied. Here, we used in vitro electrophysiology in acute brain slices from adolescent rats to demonstrate that T-type calcium currents (T-currents) are prominent in the majority of the studied CeM neurons and are critical determinants of low-threshold calcium spikes (LTSs), which in turn regulate excitability of these neurons. Using an ATP-free internal solution decreased T-current density and induced a profound hyperpolarizing shift in steady-state inactivation curves while voltage-dependent activation kinetics were spared. Furthermore, selective pharmacological blockade of T-channels or use of an ATP-free solution reduced both tonic action potential (AP) frequency and rebound burst firing in CeM neurons. Our results indicate that T-channels are critical regulators of a thalamocortical circuit output and suggest that cytosolic ATP could be an endogenous regulatory mechanism in which T-channels may functionally gate sensory transmission and arousal in vivo.
Collapse
|
20
|
Bezençon O, Heidmann B, Siegrist R, Stamm S, Richard S, Pozzi D, Corminboeuf O, Roch C, Kessler M, Ertel EA, Reymond I, Pfeifer T, de Kanter R, Toeroek-Schafroth M, Moccia LG, Mawet J, Moon R, Rey M, Capeleto B, Fournier E. Discovery of a Potent, Selective T-type Calcium Channel Blocker as a Drug Candidate for the Treatment of Generalized Epilepsies. J Med Chem 2017; 60:9769-9789. [PMID: 29116786 DOI: 10.1021/acs.jmedchem.7b01236] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.
Collapse
Affiliation(s)
- Olivier Bezençon
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Bibia Heidmann
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Romain Siegrist
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Simon Stamm
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Sylvia Richard
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Davide Pozzi
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Olivier Corminboeuf
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Catherine Roch
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Melanie Kessler
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Eric A Ertel
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Isabelle Reymond
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Thomas Pfeifer
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Ruben de Kanter
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Michael Toeroek-Schafroth
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Luca G Moccia
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Jacques Mawet
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Richard Moon
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Markus Rey
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Bruno Capeleto
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Elvire Fournier
- Chemistry, Biology and Pharmacology & Pre-clinical Development, Drug Discovery, Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
21
|
Dahmardeh N, Asadi-Shekaari M, Arjmand S, Kalantaripour T, Basiri M, Shabani M. Modulation of sphingosine-1-phosphate receptor ameliorates harmaline-induced essential tremor in rat. Neurosci Lett 2017. [PMID: 28627375 DOI: 10.1016/j.neulet.2017.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Essential tremor (ET) is one of the most common movement disorders with unknown etiology. Despite lack of effective clinical treatments, some potential therapeutic factors and modulation of some neurotransmitters have been utilized to ameliorate motor symptoms in the animal models of tremor. In the current study, male Wistar rats (n=10 in each group) weighing 40-60g were divided into vehicle control groups (saline or DMSO), saline/DMSO+harmaline (30mg/kg, i.p.)+fingolimod (FTY720) (1mg/kg, i.p, 1h before harmaline injection) groups. Open field, rotarod, wire grip and foot print tests were used to evaluate motor function. The results demonstrated that administration of FTY720 can improve harmaline-induced tremor in rats. Moreover, FTY720 ameliorated gait disturbance. The results showed that FTY720 can recover step width, left and right step length; however, FTY720 failed to recover mobility duration. FTY720 also improved falling time and time spent in wire grip and rotarod, respectively. The current study provides the first evidence for the effectiveness of FTY720 on motor function in the harmaline model of ET. Furthermore, neuroprotective effects of FTY720 demonstrated in this study offer sphingosine-1-phosphate receptor (S1PR) modulators as a potential neuroprotective candidate against substance-induced tremor and a possible strategy for the treatment of patients with tremor.
Collapse
Affiliation(s)
- Narjes Dahmardeh
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Shokouh Arjmand
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Tajpari Kalantaripour
- Department of Physiology, School of Medicine, Islamic Azad University, Branch of Kerman, Kerman, Iran
| | - Mohsen Basiri
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
22
|
Abbassian H, Whalley BJ, Sheibani V, Shabani M. Cannabinoid type 1 receptor antagonism ameliorates harmaline-induced essential tremor in rat. Br J Pharmacol 2016; 173:3196-3207. [PMID: 27545646 DOI: 10.1111/bph.13581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Essential tremor (ET) is a neurological disorder with unknown aetiology. Its symptoms include cerebellar motor disturbances, cognitive and personality changes, hearing and olfactory deficits. Hyperactivity of excitotoxic cerebellar climbing fibres may underlie essential tremor and has been induced in rodents by systemic harmaline administration. Cannabinoid (CB) receptor agonists can cause motor disturbances; although, there are also anecdotal reports of therapeutic benefits of cannabis in motor disorders. We set out to establish the effects of CB receptor agonism and antagonism on an established rodent model of ET using a battery of accepted behaviour assays in order to determine the risk and therapeutic potential of modulating the endocannabinoid system in ET. EXPERIMENTAL APPROACH Behavioural effects of systemic treatment with a CB receptor agonist (0.1, 0.5 and 1 mg kg-1 WIN55, 212-2) or two CB1 receptor antagonists (1 mg kg-1 AM251 and 10 mg kg-1 rimonabant) on tremor induced in rats by harmaline (30 mg kg-1 ; i.p.), were assessed using tremor scoring, open field, rotarod, grip and gait tests. KEY RESULTS Overall, harmaline induced robust tremor that was typically worsened across the measured behavioural domains by CB receptor agonism but ameliorated by CB1 receptor antagonism. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence of the effects of modulating the endocannabinoid system on motor function in the harmaline model of ET. Our data suggest that CB1 receptor manipulation warrants clinical investigation as a therapeutic approach to protection against behavioural disturbances associated with ET.
Collapse
Affiliation(s)
- Hassan Abbassian
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Benjamin J Whalley
- Department of Pharmacy, School of Chemistry, Food and Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire, UK.
| | - Vahid Sheibani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran. ,
| |
Collapse
|
23
|
Remen L, Bezençon O, Simons L, Gaston R, Downing D, Gatfield J, Roch C, Kessler M, Mosbacher J, Pfeifer T, Grisostomi C, Rey M, Ertel EA, Moon R. Preparation, Antiepileptic Activity, and Cardiovascular Safety of Dihydropyrazoles as Brain-Penetrant T-Type Calcium Channel Blockers. J Med Chem 2016; 59:8398-411. [DOI: 10.1021/acs.jmedchem.6b00756] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lubos Remen
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Olivier Bezençon
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Lloyd Simons
- Kalexsyn, Inc., 4502 Campus Drive, Kalamazoo, Michigan 49008, United States
| | - Rick Gaston
- Kalexsyn, Inc., 4502 Campus Drive, Kalamazoo, Michigan 49008, United States
| | - Dennis Downing
- Kalexsyn, Inc., 4502 Campus Drive, Kalamazoo, Michigan 49008, United States
| | - John Gatfield
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Catherine Roch
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Melanie Kessler
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Johannes Mosbacher
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Thomas Pfeifer
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Corinna Grisostomi
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Markus Rey
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Eric A. Ertel
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Richard Moon
- Drug
Discovery Chemistry, Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| |
Collapse
|
24
|
Fasano A, Deuschl G. Therapeutic advances in tremor. Mov Disord 2015; 30:1557-65. [DOI: 10.1002/mds.26383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital-UHN, Division of Neurology, University of Toronto; Toronto Ontario Canada
| | - Günther Deuschl
- Department of Neurology; Christian-Albrechts-University Kiel; Germany
| |
Collapse
|
25
|
Zhang Q, Xia Z, Joshi S, Scott VE, Jarvis MF. Optimization of ADME Properties for Sulfonamides Leading to the Discovery of a T-Type Calcium Channel Blocker, ABT-639. ACS Med Chem Lett 2015; 6:641-4. [PMID: 26101566 DOI: 10.1021/acsmedchemlett.5b00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/28/2015] [Indexed: 11/30/2022] Open
Abstract
The discovery of a novel peripherally acting and selective Cav3.2 T-type calcium channel blocker, ABT-639, is described. HTS hits 1 and 2, which have poor metabolic stability, were optimized to obtain 4, which has improved stability and oral bioavailability. Modification of 4 to further improve ADME properties led to the discovery of ABT-639. Following oral administration, ABT-639 produces robust antinociceptive activity in experimental pain models at doses that do not significantly alter psychomotor or hemodynamic function in the rat.
Collapse
Affiliation(s)
- Qingwei Zhang
- Neuroscience
Research, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Zhiren Xia
- Neuroscience
Research, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Shailen Joshi
- Neuroscience
Research, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Victoria E. Scott
- Neuroscience
Research, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Michael F. Jarvis
- Neuroscience
Research, AbbVie, 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| |
Collapse
|
26
|
Vaziri Z, Abbassian H, Sheibani V, Haghani M, Nazeri M, Aghaei I, Shabani M. The therapeutic potential of Berberine chloride hydrate against harmaline-induced motor impairments in a rat model of tremor. Neurosci Lett 2015; 590:84-90. [PMID: 25643620 DOI: 10.1016/j.neulet.2015.01.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 01/29/2015] [Indexed: 11/16/2022]
Abstract
Essential tremor (ET) is a progressive neurological disorder with motor and non-motor symptoms. It has conclusively been shown that modulation of glutamate receptors could ameliorate ET. Recent studies have suggested that Berberine (BBR) has an inhibitory effect on glutamate receptors. Therefore, BBR may have therapeutic effects on ET. In this study, male Wistar rats (n=10 in each group) weighing 40-60 g were divided into control, harmaline (30 mg/kg, i.p.) and berberine (10, 20 or 50mg/kg, i.p, 15 min before harmaline injection) groups. Open field, rotarod, wire grip and foot print tests were used to evaluate motor performance. The results indicated that the administration of BBR (10 and 20mg/kg) attenuated harmaline-induced tremor in rats, but the beneficial effects of BBR could not be identified at dose 50mg/kg. In addition, BBR ameliorated gait disturbance in doses of 10 and 20mg/kg. The high dose of BBR not only failed to recover step width but also showed an adverse effect on left and right step length. The results indicate that BBR only in dose of 20mg/kg recovers mobility duration. The current study found a dose-dependent manner for the therapeutic effects of BBR in ET. Our study provides the initial evidence for the effects of BBR on motor function. Since BBR exerts its effects mainly through regulation of neurotransmitter release or blocke of NMDA receptors, thus, it is predicted that BBR ameliorate harmaline effect through blockade of NMDA receptors or glutamate release. This is an important issue for future research to evaluate the possible mechanisms involved.
Collapse
Affiliation(s)
- Zohreh Vaziri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Abbassian
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Nazeri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Aghaei
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
27
|
Salamone JD, Podurgiel S, Collins-Praino LE, Correa M. Physiological and Behavioral Assessment of Tremor in Rodents. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00038-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Pietrzak B, Zwierzyńska E, Krupa A. A Pharmaco-EEG-Based Assessment of the Interaction Between Ethanol and Zonisamide. Alcohol Alcohol 2014; 49:505-14. [DOI: 10.1093/alcalc/agu024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Lee JH, Seo SH, Lim EJ, Cho NC, Nam G, Kang SB, Pae AN, Jeong N, Keum G. Synthesis and biological evaluation of 1-(isoxazol-5-ylmethylaminoethyl)-4-phenyl tetrahydropyridine and piperidine derivatives as potent T-type calcium channel blockers with antinociceptive effect in a neuropathic pain model. Eur J Med Chem 2014; 74:246-57. [DOI: 10.1016/j.ejmech.2013.12.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/11/2022]
|
30
|
Condello S, Currò M, Ferlazzo N, Costa G, Visalli G, Caccamo D, Pisani LR, Costa C, Calabresi P, Ientile R, Pisani F. Protective effects of zonisamide against rotenone-induced neurotoxicity. Neurochem Res 2013; 38:2631-9. [PMID: 24142350 DOI: 10.1007/s11064-013-1181-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 02/08/2023]
Abstract
Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson's disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10-100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, AOU Policlinico "G. Martino", Via C. Valeria, 98125, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Choi KH. The design and discovery of T-type calcium channel inhibitors for the treatment of central nervous system disorders. Expert Opin Drug Discov 2013; 8:919-31. [DOI: 10.1517/17460441.2013.796926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|