1
|
Liu Q, Rubarth K, Faber J, Sulzer P, Dogan I, Barkhoff M, Minnerop M, Berlijn AM, Elben S, Jacobi H, Aktories JE, Huvermann DM, Erdlenbruch F, Van der Veen R, Müller J, Nio E, Frank B, Köhrmann M, Wondzinski E, Siebler M, Reetz K, Konczak J, Konietschke F, Klockgether T, Synofzik M, Röske S, Timmann D, Thieme A. Subtypes of cognitive impairment in cerebellar disease identified by cross-diagnostic cluster-analysis: results from a German multicenter study. J Neurol 2024; 272:83. [PMID: 39708269 PMCID: PMC11663179 DOI: 10.1007/s00415-024-12831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Cognitive and neuropsychiatric impairment, known as cerebellar cognitive affective syndrome (CCAS), may be present in cerebellar disorders. This study identified distinct CCAS subtypes in cerebellar patients using cluster analysis. METHODS The German CCAS-Scale (G-CCAS-S), a brief screening test for CCAS, was assessed in 205 cerebellar patients and 200 healthy controls. K-means cluster analysis was applied to G-CCAS-S data to identify cognitive clusters in patients. Demographic and clinical variables were used to characterize the clusters. Multiple linear regression quantified their relative contribution to cognitive performance. The ability of the G-CCAS-S to correctly distinguish between patients and controls was compared across the clusters. RESULTS Two clusters explained the variance of cognitive performance in patients' best. Cluster 1 (30%) exhibited severe impairment. Cluster 2 (70%) displayed milder dysfunction and overlapped substantially with that of healthy controls. Cluster 1 patients were on average older, less educated, showed more severe ataxia and more extracerebellar involvement than cluster 2 patients. The cluster assignment predicted cognitive performance even after adjusting for all other covariates. The G-CCAS-S demonstrated good discriminative ability for cluster 1, but not for cluster 2. CONCLUSIONS The variance of cognitive impairment in cerebellar disorders is best explained by one severely affected and one mildly affected cluster. Cognitive performance is not only predicted by demographic/clinical characteristics, but also by cluster assignment itself. This indicates that factors that have not been captured in this study likely have effects on cognitive cerebellar functions. Moreover, the CCAS-S appears to have a relative weakness in identifying patients with only mild cognitive deficits. STUDY REGISTRATION The study has prospectively been registered at the German Clinical Study Register ( https://www.drks.de ; DRKS-ID: DRKS00016854).
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Rubarth
- Institute of Biometry and Clinical Epidemiology, Charité-University Medicine Berlin, Corporate Member of Freie University, Berlin, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
- Department of Neurology, Bonn University Hospital, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Patricia Sulzer
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, Eberhard-Karls University Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Helmholtz Association, Tübingen, Germany
| | - Imis Dogan
- Department of Neurology, University Hospital RWTH Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Miriam Barkhoff
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Martina Minnerop
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich GmbH, Jülich, Germany
| | - Adam M Berlijn
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich GmbH, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Saskia Elben
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Heike Jacobi
- Department of Neurology, Heidelberg University Hospital, Ruprecht-Karls University, Heidelberg, Germany
| | - Julia-Elisabeth Aktories
- Department of Neurology, Heidelberg University Hospital, Ruprecht-Karls University, Heidelberg, Germany
| | - Dana M Huvermann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Raquel Van der Veen
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Johanna Müller
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Enzo Nio
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Frank
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elke Wondzinski
- Department of Neurology and Neurorehabilitation, MediClin Rhein/Ruhr, Essen, Germany
| | - Mario Siebler
- Department of Neurology and Neurorehabilitation, MediClin Rhein/Ruhr, Essen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, Minneapolis, USA
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-University Medicine Berlin, Corporate Member of Freie University, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, Eberhard-Karls University Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Helmholtz Association, Tübingen, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Thieme
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Rodríguez-Labrada R, Canales-Ochoa N, Galicia-Polo MDL, Cruz-Rivas E, Romanzetti S, Peña-Acosta A, Estupiñán-Rodríguez A, Vázquez-Mojena Y, Dogan I, Auburger G, Reetz K, Velázquez-Pérez L. Structural Brain Correlates of Sleep Microstructure in Spinocerebellar Ataxia Type 2 and its Role on Clinical Phenotype. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1839-1847. [PMID: 38438827 DOI: 10.1007/s12311-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
The influence of brain atrophy on sleep microstructure in Spinocerebellar Ataxias (SCAs) has not been extensively explored limiting the use of these sleep traits as surrogate biomarkers of neurodegeneration and clinical phenotype. The objective of the study is to explore the relationship between sleep microstructure and brain atrophy in SCA2 and its role in the clinical phenotype. Fourteen SCA2 mutation carriers (7 pre-manifest and 7 manifest subjects) underwent polysomnographic, structural MRI, and clinical assessments. Particularly, markers of REM and non-REM sleep microstructure, measures of cerebellar and brainstem atrophy, and clinical scores were analyzed through correlation and mediation analyses. The sleep spindle activity exhibited a negative correlation with the number of trials required to complete the verbal memory test (VMT), and a positive correlation with the cerebellar volume, but the significance of the latter correlation did not survive multiple testing corrections. However, the causal mediation analyses unveiled that sleep spindle activity significantly mediates the association between cerebellar atrophy and VMT performance. Regarding REM sleep, both phasic EMG activity and REM sleep without atonia exhibited significant associations with pontine atrophy and disease severity measures. However, they did not demonstrate a causal mediation effect between the atrophy measures and disease severity. Our study provides evidence about the association of the pontocerebellar atrophy with sleep microstructure in SCA2 offering insights into the cerebellar involvement in cognition via the control of the sleep spindle activity. Therefore, our findings may help to understand the disease pathogenesis and to better characterize sleep microstructure parameters as disease biomarkers.Clinical trial registration number (TRN): No applicable.
Collapse
Affiliation(s)
- Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba.
- Cuban Centre for Neurosciences, 190 St, between 25 St & 27 St, 11300, Playa, Havana, Cuba.
| | - Nalia Canales-Ochoa
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba
| | | | | | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 3052074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074, Aachen, Germany
| | - Arnoy Peña-Acosta
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba
| | - Annelié Estupiñán-Rodríguez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba
| | - Yaimeé Vázquez-Mojena
- Cuban Centre for Neurosciences, 190 St, between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 3052074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074, Aachen, Germany
| | - Georg Auburger
- Clinic of Neurology, Experimental Neurology, Goethe University Frankfurt, University Hospital, 60590, Frankfurt, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 3052074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074, Aachen, Germany
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad St 16 between 12 St & 16 St. 80100, Holguin, Cuba.
- Cuban Academy of Sciences, Cuba St 460, Between Teniente Rey & Amargura , 10100, Habana Vieja, Havana, Cuba.
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba.
- Faculty of Chemistry, University of Havana, Zapata St Between G St & Carlitos Aguirre St., 10400, Plaza de La Revolución, Havana, Cuba.
| |
Collapse
|
3
|
Robertson JW, Adanyeguh I, Bender B, Boesch S, Brunetti A, Cocozza S, Coutinho L, Deistung A, Diciotti S, Dogan I, Durr A, Fernandez-Ruiz J, Göricke SL, Grisoli M, Han S, Mariotti C, Marzi C, Mascalchi M, Mochel F, Nachbauer W, Nanetti L, Nigri A, Ono SE, Onyike CU, Prince JL, Reetz K, Romanzetti S, Saccà F, Synofzik M, Ghizoni Teive HA, Thomopoulos SI, Thompson PM, Timmann D, Ying SH, Harding IH, Hernandez-Castillo CR. The Pattern and Staging of Brain Atrophy in Spinocerebellar Ataxia Type 2 (SCA2): MRI Volumetrics from ENIGMA-Ataxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613281. [PMID: 39345594 PMCID: PMC11429976 DOI: 10.1101/2024.09.16.613281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Objective Spinocerebellar ataxia type 2 (SCA2) is a rare, inherited neurodegenerative disease characterised by progressive deterioration in both motor coordination and cognitive function. Atrophy of the cerebellum, brainstem, and spinal cord are core features of SCA2, however the evolution and pattern of whole-brain atrophy in SCA2 remain unclear. We undertook a multi-site, structural magnetic resonance imaging (MRI) study to comprehensively characterize the neurodegeneration profile of SCA2. Methods Voxel-based morphometry analyses of 110 participants with SCA2 and 128 controls were undertaken to assess groupwise differences in whole-brain volume. Correlations with clinical severity and genotype, and cross-sectional profiling of atrophy patterns at different disease stages, were also performed. Results Atrophy in SCA2 relative to controls was greatest (Cohen's d>2.5) in the cerebellar white matter (WM), middle cerebellar peduncle, pons, and corticospinal tract. Very large effects (d>1.5) were also evident in the superior cerebellar, inferior cerebellar, and cerebral peduncles. In cerebellar grey matter (GM), large effects (d>0.8) mapped to areas related to both motor coordination and cognitive tasks. Strong correlations (|r|>0.4) between volume and disease severity largely mirrored these groupwise outcomes. Stratification by disease severity showed a degeneration pattern beginning in cerebellar and pontine WM in pre-clinical subjects; spreading to the cerebellar GM and cerebro-cerebellar/corticospinal WM tracts; then finally involving the thalamus, striatum, and cortex in severe stages. Interpretation The magnitude and pattern of brain atrophy evolves over the course of SCA2, with widespread, non-uniform involvement across the brainstem, cerebellar tracts, and cerebellar cortex; and late involvement of the cerebral cortex and striatum.
Collapse
Affiliation(s)
| | - Isaac Adanyeguh
- Sorbonne Université, Institut du Cerveau, INSERM, CNRS, AP-HP, Paris, France
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Léo Coutinho
- Post-Graduate Program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), University Medicine Halle, Halle (Saale), Germany
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau, INSERM, CNRS, AP-HP, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, DMU BioGeM, Department of Genetics, Paris, France
| | - Juan Fernandez-Ruiz
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico
| | - Sophia L. Göricke
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marina Grisoli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shuo Han
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Chiara Marzi
- Department of Statistics, Computer Science, and Applications “Giuseppe Parenti”, University of Florence, Florence, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Fanny Mochel
- Sorbonne Université, Institut du Cerveau, INSERM, CNRS, AP-HP, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, DMU BioGeM, Department of Genetics, Paris, France
| | - Wolfgang Nachbauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sergio E. Ono
- Clínica DAPI - Diagnóstico Avançado Por Imagem, Curitiba, Brazil
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Francesco Saccà
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Hélio A. Ghizoni Teive
- Post-Graduate Program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, USA
| | - Dagmar Timmann
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sarah H. Ying
- Department of Radiology, Johns Hopkins University, Baltimore, USA
| | - Ian H. Harding
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| | | |
Collapse
|
4
|
Vázquez-Mojena Y, Rodríguez-Labrada R, Córdova-Rodríguez Y, Domínguez-Barrios Y, Fernández-Herrera ME, León-Arcia K, Pavón-Fuentes N, Robinson-Agramonte MDLA, Velázquez-Pérez L. Serum S100β Levels Are Linked with Cognitive Decline and Peripheral Inflammation in Spinocerebellar Ataxia Type 2. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1509-1520. [PMID: 38347269 DOI: 10.1007/s12311-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 07/25/2024]
Abstract
Experimental and clinical studies have indicated a potential role of the protein S100β in the pathogenesis and phenotype of neurodegenerative diseases. However, its impact on spinocerebellar ataxia type 2 (SCA2) remains to be elucidated. The objective of the study is to determine the serum levels of S100β in SCA2 and its relationship with molecular, clinical, cognitive, and peripheral inflammatory markers of the disease. Serum concentrations of S100β were measured by enzyme-linked immunosorbent assay in 39 SCA2 subjects and 36 age- and gender-matched controls. Clinical scores of ataxia, non-ataxia symptoms, cognitive dysfunction, and some blood cell count-derived inflammatory indices were assessed. The SCA2 individuals manifested S100β levels similar to the control group, at low nanomolar concentrations. However, the S100β levels were directly associated with a better performance of cognitive evaluation within the SCA2 cohort. Moreover, the S100β levels were inversely correlated with most peripheral inflammatory indices. Indeed, the neutrophil-to-lymphocyte ratio significantly mediated the effect of serum S100β on cognitive performance, even after controlling for the ataxia severity in the causal mediation analysis. Our findings suggested that, within physiologic concentrations, the protein S100β exerts a neuroprotective role against cognitive dysfunction in SCA2, likely via the suppression of pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yaimeé Vázquez-Mojena
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Roberto Rodríguez-Labrada
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba.
- Cuban Centre for Neurosciences, 190 Street, 19818, Between 25 & 27, 11600, Cubanacan, Playa, Havana, Cuba.
| | - Yanetsy Córdova-Rodríguez
- Institute of Nephrology "Abelardo Buch López", 26 Avenue & Rancho Boyeros Avenue10400, Plaza de La Revolución, Havana, Cuba
| | - Yennis Domínguez-Barrios
- Clinical & Surgical Hospital "Calixto Garcia", Universidad Avenue & J St, Vedado10400, Plaza de La Revolución, Havana, Cuba
| | - Mario E Fernández-Herrera
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba
| | - Karen León-Arcia
- Department of Molecular Biology, Cuban Centre for Neuroscience, 190 St, Between 25 St & 27 St, 11300, Playa, Havana, Cuba
| | - Nancy Pavón-Fuentes
- Neuroimmunology Dept, International Centre for Neurological Restoration, 25 Avenue 15805, Between 158 St & 160 St, 11300, Playa, Havana, Cuba
| | | | - Luis Velázquez-Pérez
- Department of Human Physiology, Medical University of Havana, 146 St, 3102, 11300, Playa, Havana, Cuba
- Cuban Academy of Sciences, Cuba St 460, Between Teniente Rey & Amargura, Habana Vieja, 10100, Havana, Cuba
- Faculty of Chemistry, University of Havana, Zapata St Between G St & Carlitos Aguirre St, 10400, Plaza de La Revolución, Havana, Cuba
| |
Collapse
|
5
|
Chen S, Ashton C, Sakalla R, Clement G, Planel S, Bonnet C, Lamont P, Kulanthaivelu K, Nalini A, Houlden H, Duquette A, Dicaire MJ, Agudo PI, Martinez JR, de Lucas EM, Berjon RS, Ceberio JI, Indelicato E, Boesch S, Synofzik M, Bender B, Danzi MC, Zuchner S, Pellerin D, Brais B, Renaud M, La Piana R. Neuroradiological findings in GAA- FGF14 ataxia (SCA27B): more than cerebellar atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302945. [PMID: 38405699 PMCID: PMC10889027 DOI: 10.1101/2024.02.16.24302945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background GAA-FGF14 ataxia (SCA27B) is a recently reported late-onset ataxia caused by a GAA repeat expansion in intron 1 of the FGF14 gene. Initial studies revealed cerebellar atrophy in 74-97% of patients. A more detailed brain imaging characterization of GAA-FGF14 ataxia is now needed to provide supportive diagnostic features and earlier disease recognition. Methods We performed a retrospective review of the brain MRIs of 35 patients (median age at MRI 63 years; range 28-88 years) from Quebec (n=27), Nancy (n=3), Perth (n=3) and Bengaluru (n=2) to assess the presence of atrophy in vermis, cerebellar hemispheres, brainstem, cerebral hemispheres, and corpus callosum, as well as white matter involvement. Following the identification of the superior cerebellar peduncles (SCPs) involvement, we verified its presence in 54 GAA-FGF14 ataxia patients from four independent cohorts (Tübingen n=29; Donostia n=12; Innsbruck n=7; Cantabria n=6). To assess lobular atrophy, we performed quantitative cerebellar segmentation in 5 affected subjects with available 3D T1-weighted images and matched controls. Results Cerebellar atrophy was documented in 33 subjects (94.3%). We observed SCP involvement in 22 subjects (62.8%) and confirmed this finding in 30/54 (55.6%) subjects from the validation cohorts. Cerebellar segmentation showed reduced mean volumes of lobules X and IV in the 5 affected individuals. Conclusions Cerebellar atrophy is a key feature of GAA-FGF14 ataxia. The frequent SCP involvement observed in different cohorts may facilitate the diagnosis. The predominant involvement of lobule X correlates with the frequently observed downbeat nystagmus.
Collapse
Affiliation(s)
- Shihan Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Catherine Ashton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia
| | - Rawan Sakalla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | | | - Phillipa Lamont
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia
| | - Karthik Kulanthaivelu
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Antoine Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal; Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pablo Iruzubieta Agudo
- Department of Neurology, University Hospital of Donostia, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Javier Ruiz Martinez
- Department of Neurology, University Hospital of Donostia, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | | | | | | | | | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Austria
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Germany
| | - Matt C. Danzi
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Zuchner
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University
| | | | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University
- Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Álvarez-Cuesta JA, Mora-Batista C, Reyes-Carreto R, Carrillo-Rodes FJ, Fitz SJT, González-Zaldivar Y, Vargas-De-León C. On the Cut-Off Value of the Anteroposterior Diameter of the Midbrain Atrophy in Spinocerebellar Ataxia Type 2 Patients. Brain Sci 2024; 14:53. [PMID: 38248268 PMCID: PMC10813098 DOI: 10.3390/brainsci14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Spinocerebellar ataxias (SCA) is a term that refers to a group of hereditary ataxias, which are neurological diseases characterized by degeneration of the cells that constitute the cerebellum. Studies suggest that magnetic resonance imaging (MRI) supports diagnoses of ataxias, and linear measurements of the aneteroposterior diameter of the midbrain (ADM) have been investigated using MRI. These measurements correspond to studies in spinocerebellar ataxia type 2 (SCA2) patients and in healthy subjects. Our goal was to obtain the cut-off value for ADM atrophy in SCA2 patients. (2) Methods: This study evaluated 99 participants (66 SCA2 patients and 33 healthy controls). The sample was divided into estimations (80%) and validation (20%) samples. Using the estimation sample, we fitted a logistic model using the ADM and obtained the cut-off value through the inverse of regression. (3) Results: The optimal cut-off value of ADM was found to be 18.21 mm. The area under the curve (AUC) of the atrophy risk score was 0.957 (95% CI: 0.895-0.991). Using this cut-off on the validation sample, we found a sensitivity of 100.00% (95% CI: 76.84%-100.00%) and a specificity of 85.71% (95% CI: 42.13%-99.64%). (4) Conclusions: We obtained a cut-off value that has an excellent discriminatory capacity to identify SCA2 patients.
Collapse
Affiliation(s)
- José Alberto Álvarez-Cuesta
- Centro de Investigación y Rehabilitación de las Ataxias Hereditarias, VPWP+RM5, Holguín 80100, Cuba; (J.A.Á.-C.); (F.J.C.-R.); (Y.G.-Z.)
| | - Camilo Mora-Batista
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39087, Mexico;
| | - Ramón Reyes-Carreto
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39087, Mexico;
| | - Frank Jesus Carrillo-Rodes
- Centro de Investigación y Rehabilitación de las Ataxias Hereditarias, VPWP+RM5, Holguín 80100, Cuba; (J.A.Á.-C.); (F.J.C.-R.); (Y.G.-Z.)
| | | | - Yanetza González-Zaldivar
- Centro de Investigación y Rehabilitación de las Ataxias Hereditarias, VPWP+RM5, Holguín 80100, Cuba; (J.A.Á.-C.); (F.J.C.-R.); (Y.G.-Z.)
| | - Cruz Vargas-De-León
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
- Laboratorio de Modelación Bioestadística para la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
7
|
Cottam NC, Bamfo T, Harrington MA, Charvet CJ, Hekmatyar K, Tulin N, Sun J. Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy. Brain Pathol 2023; 33:e13162. [PMID: 37218083 PMCID: PMC10467044 DOI: 10.1111/bpa.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | - Tiffany Bamfo
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | | | - Christine J. Charvet
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
- Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnAlabamaUSA
- Department of PsychologyDelaware State UniversityDoverDEUnited States
| | - Khan Hekmatyar
- Center for Biomedical and Brain ImagingUniversity of DelawareNewarkDelawareUSA
- Bioimaging Research Center for Biomedical and Brain ImagingUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikita Tulin
- Department of NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jianli Sun
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
8
|
TR-FRET-Based Immunoassay to Measure Ataxin-2 as a Target Engagement Marker in Spinocerebellar Ataxia Type 2. Mol Neurobiol 2023; 60:3553-3567. [PMID: 36894829 PMCID: PMC10122633 DOI: 10.1007/s12035-023-03294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.
Collapse
|
9
|
Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Corrigendum: Assessment of cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI. Front Neurol 2022; 13:1038298. [PMID: 36247785 PMCID: PMC9559733 DOI: 10.3389/fneur.2022.1038298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Young Woo Park
| | - James M. Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Isaac M. Adanyeguh
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Christophe Lenglet
| |
Collapse
|
10
|
Rodríguez-Labrada R, Batista-Izquierdo A, González-Melix Z, Reynado-Cejas L, Vázquez-Mojena Y, Sanz YA, Canales-Ochoa N, González-Zaldívar Y, Dogan I, Reetz K, Velázquez-Pérez L. Cognitive Decline Is Closely Associated with Ataxia Severity in Spinocerebellar Ataxia Type 2: a Validation Study of the Schmahmann Syndrome Scale. CEREBELLUM (LONDON, ENGLAND) 2022. [PMID: 34313938 DOI: 10.1007/s12311-021-01305-z/figures/3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The cerebellar cognitive affective syndrome scale (CCAS-S) was designed to detect specific cognitive dysfunctions in cerebellar patients but is scarcely validated in spinocerebellar ataxias (SCA). The objective of this study is to determine the usefulness of the CCAS-S in a Cuban cohort of SCA2 patients and the relationship of its scores with disease severity. The original scale underwent a forward and backward translation into Spanish language, followed by a pilot study to evaluate its comprehensibility. Reliability, discriminant, and convergent validity assessments were conducted in 64 SCA2 patients and 64 healthy controls matched for sex, age, and education. Fifty patients completed the Montreal Cognitive Assessment (MoCA) test. The CCAS-S showed an acceptable internal consistency (Cronbach's alpha = 0.74) while its total raw score and the number of failed tests showed excellent (ICC = 0.94) and good (ICC = 0.89) test-retest reliability, respectively. Based on original cut-offs, the sensitivity of CCAS-S to detect possible/probable/definite CCAS was notably high (100%/100%/91%), but specificities were low (6%/30/64%) because the decreased specificity observed in four items. CCAS-S performance was significantly influenced by ataxia severity in patients and by education in both groups. CCAS-S scores correlated with MoCA scores, but showed higher sensitivity than MoCA to detect cognitive impairments in patients. The CCAS-S is particularly useful to detect cognitive impairments in SCA2 but some transcultural and/or age and education-dependent adaptations could be necessary to improve its diagnostic properties. Furthermore, this scale confirmed the parallelism between cognitive and motor deficits in SCA2, giving better insights into the disease pathophysiology and identifying novel outcomes for clinical trials.
Collapse
Affiliation(s)
- Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.
- Cuban Center for Neurosciences, 190st between 25st and 27st, Cubanacan, Playa, 11300, Havana, Cuba.
| | | | | | | | - Yaimeé Vázquez-Mojena
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
- Cuban Center for Neurosciences, 190st between 25st and 27st, Cubanacan, Playa, 11300, Havana, Cuba
| | | | - Nalia Canales-Ochoa
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
| | | | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.
- Cuban Academy of Sciences, Cuba st 460, Between Teniente Rey St and Compostela St, Habana Vieja, 19100, Havana, Cuba.
| |
Collapse
|
11
|
Rodríguez-Labrada R, Batista-Izquierdo A, González-Melix Z, Reynado-Cejas L, Vázquez-Mojena Y, Sanz YA, Canales-Ochoa N, González-Zaldívar Y, Dogan I, Reetz K, Velázquez-Pérez L. Cognitive Decline Is Closely Associated with Ataxia Severity in Spinocerebellar Ataxia Type 2: a Validation Study of the Schmahmann Syndrome Scale. THE CEREBELLUM 2021; 21:391-403. [PMID: 34313938 DOI: 10.1007/s12311-021-01305-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
The cerebellar cognitive affective syndrome scale (CCAS-S) was designed to detect specific cognitive dysfunctions in cerebellar patients but is scarcely validated in spinocerebellar ataxias (SCA). The objective of this study is to determine the usefulness of the CCAS-S in a Cuban cohort of SCA2 patients and the relationship of its scores with disease severity. The original scale underwent a forward and backward translation into Spanish language, followed by a pilot study to evaluate its comprehensibility. Reliability, discriminant, and convergent validity assessments were conducted in 64 SCA2 patients and 64 healthy controls matched for sex, age, and education. Fifty patients completed the Montreal Cognitive Assessment (MoCA) test. The CCAS-S showed an acceptable internal consistency (Cronbach's alpha = 0.74) while its total raw score and the number of failed tests showed excellent (ICC = 0.94) and good (ICC = 0.89) test-retest reliability, respectively. Based on original cut-offs, the sensitivity of CCAS-S to detect possible/probable/definite CCAS was notably high (100%/100%/91%), but specificities were low (6%/30/64%) because the decreased specificity observed in four items. CCAS-S performance was significantly influenced by ataxia severity in patients and by education in both groups. CCAS-S scores correlated with MoCA scores, but showed higher sensitivity than MoCA to detect cognitive impairments in patients. The CCAS-S is particularly useful to detect cognitive impairments in SCA2 but some transcultural and/or age and education-dependent adaptations could be necessary to improve its diagnostic properties. Furthermore, this scale confirmed the parallelism between cognitive and motor deficits in SCA2, giving better insights into the disease pathophysiology and identifying novel outcomes for clinical trials.
Collapse
Affiliation(s)
- Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.
- Cuban Center for Neurosciences, 190st between 25st and 27st, Cubanacan, Playa, 11300, Havana, Cuba.
| | | | | | | | - Yaimeé Vázquez-Mojena
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
- Cuban Center for Neurosciences, 190st between 25st and 27st, Cubanacan, Playa, 11300, Havana, Cuba
| | | | - Nalia Canales-Ochoa
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba
| | | | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.
- Cuban Academy of Sciences, Cuba st 460, Between Teniente Rey St and Compostela St, Habana Vieja, 19100, Havana, Cuba.
| |
Collapse
|
12
|
White JJ, Bosman LWJ, Blot FGC, Osório C, Kuppens BW, Krijnen WHJJ, Andriessen C, De Zeeuw CI, Jaarsma D, Schonewille M. Region-specific preservation of Purkinje cell morphology and motor behavior in the ATXN1[82Q] mouse model of spinocerebellar ataxia 1. Brain Pathol 2021; 31:e12946. [PMID: 33724582 PMCID: PMC8412070 DOI: 10.1111/bpa.12946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
Purkinje cells are the primary processing units of the cerebellar cortex and display molecular heterogeneity that aligns with differences in physiological properties, projection patterns, and susceptibility to disease. In particular, multiple mouse models that feature Purkinje cell degeneration are characterized by incomplete and patterned Purkinje cell degeneration, suggestive of relative sparing of Purkinje cell subpopulations, such as those expressing Aldolase C/zebrinII (AldoC) or residing in the vestibulo‐cerebellum. Here, we investigated a well‐characterized Purkinje cell‐specific mouse model for spinocerebellar ataxia type 1 (SCA1) that expresses human ATXN1 with a polyQ expansion (82Q). Our pathological analysis confirms previous findings that Purkinje cells of the vestibulo‐cerebellum, i.e., the flocculonodular lobes, and crus I are relatively spared from key pathological hallmarks: somatodendritic atrophy, and the appearance of p62/SQSTM1‐positive inclusions. However, immunohistological analysis of transgene expression revealed that spared Purkinje cells do not express mutant ATXN1 protein, indicating the sparing of Purkinje cells can be explained by an absence of transgene expression. Additionally, we found that Purkinje cells in other cerebellar lobules that typically express AldoC, not only display severe pathology but also show loss of AldoC expression. The relatively preserved flocculonodular lobes and crus I showed a substantial fraction of Purkinje cells that expressed the mutant protein and displayed pathology as well as loss of AldoC expression. Despite considerable pathology in these lobules, behavioral analyses demonstrated a relative sparing of related functions, suggestive of sufficient functional cerebellar reserve. Together, the data indicate that mutant ATXN1 affects both AldoC‐positive and AldoC‐negative Purkinje cells and disrupts normal parasagittal AldoC expression in Purkinje cells. Our results show that, in a mouse model otherwise characterized by widespread Purkinje cell degeneration, sparing of specific subpopulations is sufficient to maintain normal performance of specific behaviors within the context of the functional, modular map of the cerebellum.
Collapse
Affiliation(s)
- Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Bram W Kuppens
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
13
|
Nigri A, Sarro L, Mongelli A, Pinardi C, Porcu L, Castaldo A, Ferraro S, Grisoli M, Bruzzone MG, Gellera C, Taroni F, Mariotti C, Nanetti L. Progression of Cerebellar Atrophy in Spinocerebellar Ataxia Type 2 Gene Carriers: A Longitudinal MRI Study in Preclinical and Early Disease Stages. Front Neurol 2020; 11:616419. [PMID: 33384659 PMCID: PMC7770103 DOI: 10.3389/fneur.2020.616419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxias type 2 (SCA2) is an autosomal dominant inherited disease caused by expanded trinucleotide repeats (≥32 CAG) within the coding region of ATXN2 gene. Age of disease onset primarily depends on the length of the expanded region. The majority of subjects carrying the mutation remain free of clinical signs for few decades (“pre-symptomatic” stage), but in proximity of disease onset subtle neurophysiological, cognitive, and structural brain imaging changes may occur. Aims of the present study are to determine the time-window in which early clinical and neurodegenerative MRI changes may be identified, and to evaluate the rate of the disease progression in both preclinical and early disease phases. We performed a 1-year longitudinal study in 42 subjects: 14 SCA2 patients (mean age 39 years, disease duration 7 years, SARA score 9 points), 13 presymptomatic SCA2 subjects (preSCA2, mean age 39 years, expected time to disease onset 16 years), and 15 gene-negative healthy controls (mean age 33 years). All participants underwent genetic test, neurological examination, cognitive tests, and brain MRI. Evaluations were repeated at 1-year interval. Baseline MRI evaluations in SCA2 patients showed significant atrophy in cerebellum, brainstem, basal ganglia and cortex compared to controls, while preSCA2 subjects had isolated volume loss in the pons, and cortical thinning in specific frontal and parietal areas, namely rostral-middle-frontal and precuneus. One-year longitudinal follow-up demonstrated, in SCA2 patients, volume reduction in cerebellum, pons, superior cerebellar peduncles, and midbrain, and only in the cerebellum in preSCA2 subjects. No progression in clinical or cognitive measures was observed in preSCA2 subjects. The rate of volume loss in the cerebellum and subcortical regions greatly differed between patients and preSCA2. In conclusion, our pilot study demonstrated that MRI measures are highly sensitive to identify longitudinal structural changes in SCA2 patients, and in preSCA2 up to a decade before expected disease onset. These findings may contribute in the understanding of early neurodegenerative processes and may be useful in future therapeutical trials.
Collapse
Affiliation(s)
- Anna Nigri
- Department of Neuroradiology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lidia Sarro
- Department of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Ospedale Martini, Turin, Italy
| | - Alessia Mongelli
- Department of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pinardi
- Department of Neuroradiology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Porcu
- Laboratory of Methodology for Clinical Research, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Anna Castaldo
- Department of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Ferraro
- Department of Neuroradiology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Grisoli
- Department of Neuroradiology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Department of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Department of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Department of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Nanetti
- Department of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
14
|
Chopra R, Bushart DD, Cooper JP, Yellajoshyula D, Morrison LM, Huang H, Handler HP, Man LJ, Dansithong W, Scoles DR, Pulst SM, Orr HT, Shakkottai VG. Altered Capicua expression drives regional Purkinje neuron vulnerability through ion channel gene dysregulation in spinocerebellar ataxia type 1. Hum Mol Genet 2020; 29:3249-3265. [PMID: 32964235 PMCID: PMC7689299 DOI: 10.1093/hmg/ddaa212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.
Collapse
Affiliation(s)
- Ravi Chopra
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - David D Bushart
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John P Cooper
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Logan M Morrison
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haoran Huang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hillary P Handler
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke J Man
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Assessment of Cerebral and Cerebellar White Matter Microstructure in Spinocerebellar Ataxias 1, 2, 3, and 6 Using Diffusion MRI. Front Neurol 2020; 11:411. [PMID: 32581994 PMCID: PMC7287151 DOI: 10.3389/fneur.2020.00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Development of imaging biomarkers for rare neurodegenerative diseases such as spinocerebellar ataxia (SCA) is important to non-invasively track progression of disease pathology and monitor response to interventions. Diffusion MRI (dMRI) has been shown to identify cross-sectional degeneration of white matter (WM) microstructure and connectivity between healthy controls and patients with SCAs, using various analysis methods. In this paper, we present dMRI data in SCAs type 1, 2, 3, and 6 and matched controls, including longitudinal acquisitions at 12-24-month intervals in a subset of the cohort, with up to 5 visits. The SCA1 cohort also contained 3 premanifest patients at baseline, with 2 showing ataxia symptoms at the time of the follow-up scans. We focused on two aspects: first, multimodal evaluation of the dMRI data in a cross-sectional approach, and second, longitudinal trends in dMRI data in SCAs. Three different pipelines were used to perform cross-sectional analyses in WM: region of interest (ROI), tract-based spatial statistics (TBSS), and fixel-based analysis (FBA). We further analyzed longitudinal changes in dMRI metrics throughout the brain using ROI-based analysis. Both ROI and TBSS analyses identified higher mean (MD), axial (AD), and radial (RD) diffusivity and lower fractional anisotropy (FA) in the cerebellum for all SCAs compared to controls, as well as some cerebral alterations in SCA1, 2, and 3. FBA showed lower fiber density (FD) and fiber crossing (FC) regions similar to those identified by ROI and TBSS analyses. FBA also highlighted corticospinal tract (CST) abnormalities, which was not detected by the other two pipelines. Longitudinal ROI-based analysis showed significant increase in AD in the middle cerebellar peduncle (MCP) for patients with SCA1, suggesting that the MCP may be a good candidate region to monitor disease progression. The patient who remained symptom-free throughout the study displayed no microstructural abnormalities. On the other hand, the two patients who were at the premanifest stage at baseline, and showed ataxia symptoms in their follow-up visits, displayed AD values in the MCP that were already in the range of symptomatic patients with SCA1 at their baseline visit, demonstrating that microstructural abnormalities are detectable prior to the onset of ataxia.
Collapse
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James M. Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Isaac M. Adanyeguh
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
16
|
Li ST, Zhou Y. Spinocerebellar ataxia type 2 presenting with involuntary movement: a diagnostic dilemma. J Int Med Res 2019; 47:6390-6396. [PMID: 31774014 PMCID: PMC7045683 DOI: 10.1177/0300060519889457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a rare disease characterized by slowly
progressive ataxia, dysarthria, ophthalmoplegia, and slow saccade. SCA2 can
present with a complex combination of hyperkinetic and hypokinetic movement
disorders. Here, we describe a patient with SCA2 that partly mimicked the
clinical manifestations of Huntington’s disease; similar symptoms had previously
occurred in the patient’s family members. The findings in this report indicate
that, when a patient exhibits choreiform movement (i.e., accompanying cerebellar
ataxia), an SCA2-related mutation could be responsible for the onset of disease.
In addition, this knowledge of the potential for extrapyramidal involvement in
such patients is critical for clinicians.
Collapse
Affiliation(s)
- Shu-Ting Li
- Department of General Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhou
- Department of Neurology, Jinhua Hospital, Jinhua, China
| |
Collapse
|
17
|
Cerebellum and cognition in Friedreich ataxia: a voxel-based morphometry and volumetric MRI study. J Neurol 2019; 267:350-358. [PMID: 31641877 DOI: 10.1007/s00415-019-09582-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies have suggested the presence of a significant atrophy affecting the cerebellar cortex in Friedreich ataxia (FRDA) patients, an area of the brain long considered to be relatively spared by neurodegenerative phenomena. Cognitive deficits, which occur in FRDA patients, have been associated with cerebellar volume loss in other conditions. The aim of this study was to investigate the correlation between cerebellar volume and cognition in FRDA. METHODS Nineteen FRDA patients and 20 healthy controls (HC) were included in this study and evaluated via a neuropsychological examination. Cerebellar global and lobular volumes were computed using the Spatially Unbiased Infratentorial Toolbox (SUIT). Furthermore, a cerebellar voxel-based morphometry (VBM) analysis was also carried out. Correlations between MRI metrics and clinical data were tested via partial correlation analysis. RESULTS FRDA patients showed a significant reduction of the total cerebellar volume (p = 0.004), significantly affecting the Lobule IX (p = 0.001). At the VBM analysis, we found a cluster of significant reduced GM density encompassing the entire lobule IX (p = 0.003). When correlations were probed, we found a direct correlation between Lobule IX volume and impaired visuo-spatial functions (r = 0.58, p = 0.02), with a similar correlation that was found between the same altered function and results obtained at the VBM (r = 0.52; p = 0.03). CONCLUSIONS With two different image analysis techniques, we confirmed the presence of cerebellar volume loss in FRDA, mainly affecting the posterior lobe. In particular, Lobule IX atrophy correlated with worse visuo-spatial abilities, further expanding our knowledge about the physiopathology of cognitive impairment in FRDA.
Collapse
|
18
|
Peng H, Liang X, Long Z, Chen Z, Shi Y, Xia K, Meng L, Tang B, Qiu R, Jiang H. Gene-Related Cerebellar Neurodegeneration in SCA3/MJD: A Case-Controlled Imaging-Genetic Study. Front Neurol 2019; 10:1025. [PMID: 31616370 PMCID: PMC6768953 DOI: 10.3389/fneur.2019.01025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is one of the nine polyglutamine (polyQ) diseases and is caused by a CAG repeat expansion within the coding sequence of the ATXN3 gene. Few multimodal imaging analyses of the macro- and micro-structural changes have been performed. Methods: In the present study, we recruited 31 genetically-confirmed symptomatic SCA3/MJD patients and 31 healthy subjects as controls for a multimodal neuroimaging study using structural magnetic resonance imaging (sMRI), proton magnetic resonance spectroscopy (1H-MRS) and diffusion tensor imaging (DTI). Results: The SCA3/MJD patients displayed a significantly reduced of gray matter volume in the cerebellum, pons, midbrain and medulla, as well as inferior frontal gyrus and insula, and left superior frontal gyrus. The total International Cooperative Ataxia Rating Scale (ICARS) score was inversely correlated with the gray matter volume in the cerebellar culmen, pons and midbrain. The numbers of CAG repeats in the expanded alleles were inversely correlated with the gray matter in the cerebellar culmen. NAA/Cr and NAA/Cho ratio in the middle cerebellar peduncles, dentate nucleus, cerebellar vermis, and thalamus in the SCA3/MJD patients were significantly reduced when compared to that in the normal controls, suggesting neurochemical alterations in cerebellum in the SCA3/MJD patients. Tract-Based Spatial Statistics (TBSS) analysis revealed significant lower volume and mean FA values of the cerebellar peduncles, which inversely correlated with the total scores of ICARS in our patients. Conclusions: In this study, we demonstrated cerebellar degeneration in SCA3/MJD based on tissue volume, neurochemistry, and tissue microstructure. Moreover, the associations between the clinical measures, cerebellar degeneration and genetic variation support a distinct genotype-phenotype relationship in SCA3/MJD.
Collapse
Affiliation(s)
- Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochun Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Long
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Neurology, Xinjiang Medical University, Urumchi, China
| |
Collapse
|
19
|
Zanatta A, Camargo CHF, Germiniani FMB, Raskin S, de Souza Crippa AC, Teive HAG. Abnormal Findings in Polysomnographic Recordings of Patients with Spinocerebellar Ataxia Type 2 (SCA2). THE CEREBELLUM 2019; 18:196-202. [PMID: 30264264 DOI: 10.1007/s12311-018-0982-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is characterized by a progressive cerebellar syndrome, and additionally saccadic slowing, cognitive dysfunction, and sleep disorders. The aim of this study was to assess the frequency of abnormal findings in sleep recordings of patients with SCA2. Seventeen patients with genetically confirmed SCA2 from the Movement Disorders Outpatient group of the Hospital de Clínicas da UFPR were evaluated with a structured medical interview and the Scale for the Assessment and Rating of Ataxia (SARA). Polysomnographic recordings were performed and sleep stages were scored according to standard criteria. There were 10 male subjects and 7 females, aged 24-66 years (mean 47.44). A sex- and age-matched control group of healthy subjects was used for comparison. There was a reduction of rapid eye movement (REM) sleep in 12 (70.58%), increased REM latency in 9 (52.94%), increased obstructive sleep apnea-index in 14 (82.35%), absent REM density (REM density was calculated as the total number of 3-s miniepochs of REM sleep with at least 1 REM per minute) in 13 (76.47%), and markedly reduced REM density in 4 (23.52%). There was an indirect correlation according to the SARA scale and the REM density decrease (r = - 0.6; P = < 0.001); and with a disease progression correlating with a reduction in the REM density (r = - 0.52, P = 0.03). In SCA2, changes occur mainly REM sleep. The absence/decrease of REM sleep density, even in oligosymptomatic patients, and the correlation of this finding with disease time and with the SARA scale were the main findings of the study.
Collapse
Affiliation(s)
- Alessandra Zanatta
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181 - Alto da Glória, Curitiba, 80060-900, Brazil.
| | | | - Francisco Manoel Branco Germiniani
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181 - Alto da Glória, Curitiba, 80060-900, Brazil
| | - Salmo Raskin
- Advanced Molecular Research Center, Center for Biological and Health Sciences, Catholic University of Parana, Curitiba, Brazil
| | | | - Hélio Afonso Ghizoni Teive
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Parana, Rua General Carneiro, 181 - Alto da Glória, Curitiba, 80060-900, Brazil
| |
Collapse
|
20
|
Velázquez-Pérez L, Rodríguez-Diaz JC, Rodríguez-Labrada R, Medrano-Montero J, Aguilera Cruz AB, Reynaldo-Cejas L, Góngora-Marrero M, Estupiñán-Rodríguez A, Vázquez-Mojena Y, Torres-Vega R. Neurorehabilitation Improves the Motor Features in Prodromal SCA2: A Randomized, Controlled Trial. Mov Disord 2019; 34:1060-1068. [PMID: 30958572 DOI: 10.1002/mds.27676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The search for early interventions is a novel approach in spinocerebellar ataxias, but there are few studies supporting this notion. This article aimed to assess the efficacy of neurorehabilitation treatment in prodromal spinocerebellar ataxia type 2. METHODS Thirty spinocerebellar ataxia type 2 preclinical carriers were enrolled in a randomized, controlled trial using neurorehabilitation. The intervention in the treated group was 4 hours per day, 5 days per week for 12 weeks, emphasizing static balance, gait, and limb coordination. The control group did not receive rehabilitation. The primary outcome measure was the time for 5-m tandem gait over the floor. Secondary outcomes included other timed tests with increased motor complexity, as well as the scores of the SARA and the Inventory of Non-ataxia Symptoms. RESULTS The times for 5-m tandem gait over the floor and the mattress were significantly reduced only in the rehabilitated group. Moreover, the times upholding the tandem stance over a mattress and the seesaw were notably increased only in this group. Likewise, the finger-nose and the heel-shin tests were improved in the rehabilitated group alone. The SARA score and the count of nonataxia symptoms were unchanged. CONCLUSIONS This rehabilitation program improves the subtle gait, postural and coordinative deficits in prodromal spinocerebellar ataxia type 2, which provided novel hints about the preservation of motor learning and neural plasticity mechanisms in early disease stages, leading chances for other interventional approaches in this and other spinocerebellar ataxias. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, Havana, Cuba
| | | | - Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, Havana, Cuba.,School of Physical Culture and Sport, University of Holguín, Holguín, Cuba
| | - Jacqueline Medrano-Montero
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,School of Physical Culture and Sport, University of Holguín, Holguín, Cuba
| | | | | | | | | | - Yaimeé Vázquez-Mojena
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, Havana, Cuba.,School of Physical Culture and Sport, University of Holguín, Holguín, Cuba
| | | |
Collapse
|
21
|
Mascalchi M, Vella A. Neuroimaging Applications in Chronic Ataxias. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:109-162. [PMID: 30473193 DOI: 10.1016/bs.irn.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the main instruments for neuroimaging investigation of patients with chronic ataxia. MRI has a predominant diagnostic role in the single patient, based on the visual detection of three patterns of atrophy, namely, spinal atrophy, cortical cerebellar atrophy and olivopontocerebellar atrophy, which correlate with the aetiologies of inherited or sporadic ataxia. In fact spinal atrophy is observed in Friedreich ataxia, cortical cerebellar atrophy in Ataxia Telangectasia, gluten ataxia and Sporadic Adult Onset Ataxia and olivopontocerebellar atrophy in Multiple System Atrophy cerebellar type. The 39 types of dominantly inherited spinocerebellar ataxias show either cortical cerebellar atrophy or olivopontocerebellar atrophy. T2 or T2* weighted MR images can contribute to the diagnosis by revealing abnormally increased or decreased signal with a characteristic distribution. These include symmetric T2 hyperintensity of the posterior and lateral columns of the cervical spinal cord in Friedreich ataxia, diffuse and symmetric hyperintensity of the cerebellar cortex in Infantile Neuro-Axonal Dystrophy, symmetric hyperintensity of the peridentate white matter in Cerebrotendineous Xanthomatosis, and symmetric hyperintensity of the middle cerebellar peduncles and peridentate white matter, cerebral white matter and corpus callosum in Fragile X Tremor Ataxia Syndrome. Abnormally decreased T2 or T2* signal can be observed with a multifocal distribution in Ataxia Telangectasia and with a symmetric distribution in the basal ganglia in Multiple System Atrophy. T2 signal hypointensity lining diffusely the outer surfaces of the brainstem, cerebellum and cerebrum enables diagnosis of superficial siderosis of the central nervous system. The diagnostic role of nuclear medicine techniques is smaller. SPECT and PET show decreased uptake of radiotracers investigating the nigrostriatal system in Multiple System Atrophy and in patients with Fragile X Tremor Ataxia Syndrome. Semiquantitative or quantitative MRI, SPECT and PET data describing structural, microstructural and functional changes of the cerebellum, brainstem, and spinal cord have been widely applied to investigate physiopathological changes in patients with chronic ataxias. Moreover they can track diseases progression with a greater sensitivity than clinical scales. So far, a few small-size and single center studies employed neuroimaging techniques as surrogate markers of treatment effects in chronic ataxias.
Collapse
Affiliation(s)
- Mario Mascalchi
- Meyer Children Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | |
Collapse
|
22
|
Cheng N, Wied HM, Gaul JJ, Doyle LE, Reich SG. SCA2 presenting as a focal dystonia. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2018; 5:6. [PMID: 30123518 PMCID: PMC6090825 DOI: 10.1186/s40734-018-0073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 11/14/2022]
Abstract
BACKGROUND Spinocerebellar ataxia 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in ATXN2 on chromosome 12q24. Patients present with adult-onset progressive gait ataxia, slow saccades, nystagmus, dysarthria and peripheral neuropathy. Dystonia is known to occur as SCA2 advances, but is rarely the presenting symptom. CASE PRESENTATION A 43-year-old right handed woman presented with focal dystonia of the right hand which started two years earlier with difficulty writing. There were only mild cerebellar signs. Her mother was reported to have a progressive gait disorder and we subsequently learned that she had SCA2. A total of 10 maternal family members were similarly affected. Over the course of 10 years, the patient's cerebellar signs progressed only mildly however the dystonia worsened to the extent of inability to use her right hand. Dystonia did not improve significantly with botulinum toxin, levodopa or trihexyphenidyl, but has shown marked improvement since DBS implantation in the GPi. CONCLUSIONS We describe a patient with SCA2 who presented with focal dystonia of the right upper extremity. Subtle cerebellar signs as well as the family history became especially important given the absence of predominant gait ataxia. Our case emphasizes that focal dystonia is not only a feature of SCA2, but can also rarely be the presenting sign as well as the most prominent feature during the disease course.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Heather M. Wied
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | | | - Lauren E. Doyle
- Department of Genetic Counseling, University of North Carolina Greensboro School of Health and Human Sciences, Greensboro, NC USA
| | - Stephen G. Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
23
|
Reetz K, Rodríguez-Labrada R, Dogan I, Mirzazade S, Romanzetti S, Schulz JB, Cruz-Rivas EM, Alvarez-Cuesta JA, Aguilera Rodríguez R, Gonzalez Zaldivar Y, Auburger G, Velázquez-Pérez L. Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2. Ann Clin Transl Neurol 2018; 5:128-137. [PMID: 29468174 PMCID: PMC5817824 DOI: 10.1002/acn3.504] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/21/2017] [Indexed: 01/11/2023] Open
Abstract
Objective Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease mainly affecting the cerebellum and brainstem. In this Cuban-German research collaboration, we aimed to characterize atrophy patterns and associations with clinical measures in preclinical and manifest SCA2. Methods In this study, 16 nonmanifest SCA2 mutation carriers, 26 manifest patients with SCA2, and 18 healthy control subjects underwent magnetic resonance imaging, as well as genetic and clinical characterization including assessment of ataxia (Scale for the Assessment and Rating of Ataxia) and saccade velocity in Cuba were enrolled. Semiautomated quantitative volumetry of the cerebellum and brainstem, subdivided into the medulla oblongata, the pontine brainstem, and mesencephalon was performed. Additionally, the anteroposterior diameter of the pontine brainstem was measured. Results Analysis of volumetric data revealed degeneration of the cerebellum and brainstem, in particular of pontine volumes and the anteroposterior diameter of the pons, in both manifest SCA2 patients and individuals at risk for SCA2 compared to controls. Comparing patients with nonataxic preclinical SCA2 mutation carriers, we found more pronounced reductions of the pontine brainstem and cerebellum in manifest SCA2. Volumetric data further showed associations with CAG repeat length and predicted age of onset in preclinical SCA2 individuals, and by trend with ataxia signs in patients. Although saccade velocity was associated with reduction in the pontine brainstem in preclinical and manifest SCA2, reduced ability to suppress interfering stimuli measured by the Stroop task was related to cerebellar volume loss in patients. Interpretation Preclinical SCA2 mutation carriers exhibit brain abnormalities, which could be targeted as surrogate parameters for disease progression and in future preventive trials.
Collapse
Affiliation(s)
- Kathrin Reetz
- Department of Neurology RWTH Aachen University Pauwelsstr. 3052074 Aachen Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging Forschungszentrum Jülich GmbH and RWTH Aachen University 52074 Aachen Germany
| | - Roberto Rodríguez-Labrada
- Department Clinical Neurophysiology Centre for the Research and Rehabilitation of Hereditary Ataxias Calle Libertad 26 Holguín 80100 Cuba
| | - Imis Dogan
- Department of Neurology RWTH Aachen University Pauwelsstr. 3052074 Aachen Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging Forschungszentrum Jülich GmbH and RWTH Aachen University 52074 Aachen Germany
| | - Shahram Mirzazade
- Department of Neurology RWTH Aachen University Pauwelsstr. 3052074 Aachen Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging Forschungszentrum Jülich GmbH and RWTH Aachen University 52074 Aachen Germany
| | - Sandro Romanzetti
- Department of Neurology RWTH Aachen University Pauwelsstr. 3052074 Aachen Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging Forschungszentrum Jülich GmbH and RWTH Aachen University 52074 Aachen Germany
| | - Jörg B Schulz
- Department of Neurology RWTH Aachen University Pauwelsstr. 3052074 Aachen Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging Forschungszentrum Jülich GmbH and RWTH Aachen University 52074 Aachen Germany
| | - Edilia M Cruz-Rivas
- Department of Imaging Clinical-Surgical Hospital "Lucía Iñiguez". Avenue "Celia Sanchez 1 Holguín Cuba
| | - Jose A Alvarez-Cuesta
- Department of Imaging Clinical-Surgical Hospital "Lucía Iñiguez". Avenue "Celia Sanchez 1 Holguín Cuba
| | - Raul Aguilera Rodríguez
- Department Clinical Neurophysiology Centre for the Research and Rehabilitation of Hereditary Ataxias Calle Libertad 26 Holguín 80100 Cuba
| | - Yanetza Gonzalez Zaldivar
- Department Molecular Genetics Centre for the Research and Rehabilitation of Hereditary Ataxias Calle Libertad 26 Holguín 80100 Cuba
| | - Georg Auburger
- Experimental Neurology Goethe University Medical School 60590 Frankfurt/Main Germany
| | - Luis Velázquez-Pérez
- Department Clinical Neurophysiology Centre for the Research and Rehabilitation of Hereditary Ataxias Calle Libertad 26 Holguín 80100 Cuba
| |
Collapse
|
24
|
Wu X, Liao X, Zhan Y, Cheng C, Shen W, Huang M, Zhou Z, Wang Z, Qiu Z, Xing W, Liao W, Tang B, Shen L. Microstructural Alterations in Asymptomatic and Symptomatic Patients with Spinocerebellar Ataxia Type 3: A Tract-Based Spatial Statistics Study. Front Neurol 2017; 8:714. [PMID: 29312133 PMCID: PMC5744430 DOI: 10.3389/fneur.2017.00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Objective Spinocerebellar ataxia type 3 (SCA3) is the most commonly occurring type of autosomal dominant spinocerebellar ataxia. The present study aims to investigate progressive changes in white matter (WM) fiber in asymptomatic and symptomatic patients with SCA3. Methods A total of 62 participants were included in this study. Among them, 16 were asymptomatic mutation carriers (pre-SCA3), 22 were SCA3 patients with clinical symptoms, and 24 were normal controls (NC). Group comparison of tract-based spatial statistics was performed to identify microstructural abnormalities at different SCA3 disease stages. Results Decreased fractional anisotropy (FA) and increased mean diffusivity (MD) were found in the left inferior cerebellar peduncle and superior cerebellar peduncle (SCP) in the pre-SCA3 group compared with NC. The symptomatic SCA3 group showed brain-wide WM tracts impairment in both supratentorial and infratentorial networks, and the mean FA value of the WM skeleton showed a significantly negative correlation with the International Cooperative Ataxia Rating Scale (ICARS) scores. Specifically, FA of the bilateral posterior limb of the internal capsule negatively correlated with SCA3 disease duration. We also found that FA values in the right medial lemniscus and SCP negatively correlated with ICARS scores, whereas FA in the right posterior thalamic radiation positively correlated with Montreal Cognitive Assessment scores. In addition, MD in the middle cerebellar peduncle, left anterior limb of internal capsule, external capsule, and superior corona radiate positively correlated with ICARS scores in SCA3 patients. Conclusion WM microstructural changes are present even in the asymptomatic stages of SCA3. In individuals in which the disease has progressed to the symptomatic stage, the integrity of WM fibers across the whole brain is affected. Furthermore, abnormalities in WM tracts are closely related to SCA3 disease severity, including movement disorder and cognitive dysfunction. These findings can deepen our understanding of the neural basis of SCA3 dysfunction.
Collapse
Affiliation(s)
- Xinwei Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafeng Zhan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mufang Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifan Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,National Clinical Research Center for Geriatric Disease, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaboration Innovation Center for Brain Science, Shanghai, China.,Collaboration Innovation Center for Genetics and Development, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,National Clinical Research Center for Geriatric Disease, Changsha, China
| |
Collapse
|
25
|
Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J. Spinocerebellar Ataxia Type 2: Clinicogenetic Aspects, Mechanistic Insights, and Management Approaches. Front Neurol 2017; 8:472. [PMID: 28955296 PMCID: PMC5601978 DOI: 10.3389/fneur.2017.00472] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant cerebellar ataxia that occurs as a consequence of abnormal CAG expansions in the ATXN2 gene. Progressive clinical features result from the neurodegeneration of cerebellum and extra-cerebellar structures including the pons, the basal ganglia, and the cerebral cortex. Clinical, electrophysiological, and imaging approaches have been used to characterize the natural history of the disease, allowing its classification into four distinct stages, with special emphasis on the prodromal stage, which is characterized by a plethora of motor and non-motor features. Neuropathological investigations of brain tissue from SCA2 patients reveal a widespread involvement of multiple brain systems, mainly cerebellar and brainstem systems. Recent findings linking ataxin-2 intermediate expansions to other neurodegenerative diseases such as amyotrophic lateral sclerosis have provided insights into the ataxin-2-related toxicity mechanism in neurodegenerative diseases and have raised new ethical challenges to molecular predictive diagnosis of SCA2. No effective neuroprotective therapies are currently available for SCA2 patients, but some therapeutic options such as neurorehabilitation and some emerging neuroprotective drugs have shown palliative benefits.
Collapse
Affiliation(s)
- Luis C Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Medical University of Holguín "Mariana Grajales", Holguín, Cuba
| | - Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Physical Culture School, University of Holguin "Oscar Lucero", Holguín, Cuba
| | - Juan Fernandez-Ruiz
- Department of Physiology, Medicine School, UNAM, Cuernavaca, Mexico.,Psychology School, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
26
|
Kansal K, Yang Z, Fishman AM, Sair HI, Ying SH, Jedynak BM, Prince JL, Onyike CU. Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain 2017; 140:707-720. [PMID: 28043955 DOI: 10.1093/brain/aww327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 10/21/2016] [Indexed: 11/12/2022] Open
Abstract
See King et al. (doi:10.1093/aww348) for a scientific commentary on this article.Detailed mapping of clinical dysfunctions to the cerebellar lobules in disease populations is necessary to establish the functional significance of lobules implicated in cognitive and motor functions in normal subjects. This study constitutes the first quantitative examination of the lobular correlates of a broad range of cognitive and motor phenomena in cerebellar disease. We analysed cross-sectional data from 72 cases with cerebellar disease and 36 controls without cerebellar disease. Cerebellar lobule volumes were derived from a graph-cut based segmentation algorithm. Sparse partial least squares, a variable selection approach, was used to identify lobules associated with motor function, language, executive function, memory, verbal learning, perceptual organization and visuomotor coordination. Motor dysfunctions were chiefly associated with the anterior lobe and posterior lobule HVI. Confrontation naming, noun fluency, recognition, and perceptual organization did not have cerebellar associations. Verb and phonemic fluency, working memory, cognitive flexibility, immediate and delayed recall, verbal learning, and visuomotor coordination were variably associated with HVI, Crus I, Crus II, HVII B and/or HIX. Immediate and delayed recall also showed associations with the anterior lobe. These findings provide preliminary anatomical evidence for a functional topography of the cerebellum first defined in task-based functional magnetic resonance imaging studies of normal subjects and support the hypotheses that (i) cerebellar efferents target frontal lobe neurons involved in forming action representations and new search strategies; (ii) there is greater involvement of the cerebellum when immediate recall tasks involve more complex verbal stimuli (e.g. longer words versus digits); and (iii) it is involved in spontaneous retrieval of long-term memory. More generally, they provide an anatomical background for studies that seek the mechanisms by which cognitive and motor dysfunctions arise from cerebellar degeneration. Beyond replicating these findings, future research should employ experimental tasks to probe the integrity of specific functions in cerebellar disease, and new imaging methods to quantitatively map atrophy across the cerebellum.
Collapse
Affiliation(s)
- Kalyani Kansal
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhen Yang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ann M Fishman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haris I Sair
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah H Ying
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bruno M Jedynak
- Department of Mathematics and Statistics, Portland State University, Portland, Oregon, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Velázquez-Pérez L, Rodríguez-Labrada R, Laffita-Mesa JM. Prodromal spinocerebellar ataxia type 2: Prospects for early interventions and ethical challenges. Mov Disord 2017; 32:708-718. [DOI: 10.1002/mds.26969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | - José Miguel Laffita-Mesa
- Centre for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
- Department of Clinical Neuroscience; Karolinska Universitetssjukhuset; Stockholm Sweden
| |
Collapse
|
28
|
Jaber M. [The cerebellum as a major player in motor disturbances related to Autistic Syndrome Disorders]. Encephale 2016; 43:170-175. [PMID: 27616580 DOI: 10.1016/j.encep.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 01/31/2023]
Abstract
SCIENTIFIC BACKGROUND Autism spectrum disorders (ASD) are neurodevelopmental disorders associated with disturbances in communication, social interactions, cognition and affect. ASD are also accompanied by complex movement disorders, including ataxia. A special focus of recent research in this area is made on the striatum and the cerebellum, two structures known not only to control movement but also to be involved in cognitive functions such as memory and language. Dysfunction within the motor system may be associated with abnormal movements in ASD that are translated into ataxia, abnormal pattern of righting, gait sequencing, development of walking, and hand positioning. This line of study may generate new knowledge and understanding of motor symptoms associated with ASD and aims to deliver fresh perspectives for early diagnosis and therapeutic strategies against ASD. AIMS OF THE REVIEW Despite the relative paucity of research in this area (compared to the social, linguistic, and behavioural disturbances in ASD), there is evidence that the frontostriatal motor system and/or the cerebellar motor systems may be the site of dysfunction in ASD. Indeed, the cerebellum seems to be essential in the development of basic social capabilities, communication, repetitive/restrictive behaviors, and motor and cognitive behaviors that are all impaired in ASD. Cerebellar neuropathology including cerebellar hypoplasia and reduced cerebellar Purkinje cell numbers are the most consistent neuropathologies linked to ASD. The functional state of the cerebellum and its impact on brain function in ASD is the focus of this review. This review starts by recapitulating historical findings pointing towards an implication of the cerebellum, and to a lesser extent the basal ganglia structures, in TSA. We then detail the structure/function of the cerebellum at the regional and cellular levels before describing human and animal findings indicating a role of the cerebellum and basal ganglia in ASD. HUMAN AND ANIMAL FINDINGS Several studies have attempted to identify the nature of the motor system dysfunction in ASD, and it became apparent that the motor fronto-striatal and cerebellar systems are major sites of dysfunction in this psychiatric illness. Anomalies in these structures have been revealed both at the anatomical and functional levels in human patients as well as in animal models. These models are obtained by manipulation of genes that are often implicated in glutamate transmission, by lesions of brain structures among which the cerebellum, by pharmacological treatment with drugs such as the Valproate or by maternal infections with bacterial membrane extracts of double stranded RNA mimicking a viral infection. CONCLUSION The "cognitive approach" has dominated ASD research for three decades and led to the design of interventional strategies, which have yielded satisfactory results. Nevertheless, new approaches and alternative hypotheses on the aetiology and diagnosis of ASD are needed. Research focused on motor rather than psychiatric symptoms may have a greater potential to elucidate the neurobiological basis of ASD.
Collapse
Affiliation(s)
- M Jaber
- Inserm U-1084, laboratoire de neurosciences expérimentales et cliniques, LNEC, université de Poitiers, CHU de Poitiers, bâtiment B36, 1, rue Georges-Bonnet, BP 633, TSA 51106, 86022 Poitiers cedex, France.
| |
Collapse
|
29
|
Hara D, Maki F, Tanaka S, Sasaki R, Hasegawa Y. MRI-based cerebellar volume measurements correlate with the International Cooperative Ataxia Rating Scale score in patients with spinocerebellar degeneration or multiple system atrophy. CEREBELLUM & ATAXIAS 2016; 3:14. [PMID: 27536377 PMCID: PMC4987966 DOI: 10.1186/s40673-016-0052-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/04/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Progression of clinical symptoms and cerebellar atrophy may vary among subtypes of spinocerebellar degeneration and multiple system atrophy. The aim of this cross-sectional study was to demonstrate the relationship between the International Cooperative Ataxia Rating Scale (ICARS) score and cerebellar volume derived from magnetic resonance imaging (MRI) in a broad spectrum of Japanese patients with cerebellar ataxia. METHODS A total of 86 patients with cerebellar ataxia (18 with cortical cerebellar atrophy, 34 with spinocerebellar ataxia, and 34 with multiple system atrophy) and 30 healthy subjects were studied. MRI-based cerebellar volume measurements were performed in all subjects using T1-weighted images acquired with a 1.5-T MRI scanner. The cerebellar volume/cranial anteroposterior (AP) diameter was used for statistical analysis. RESULTS Stepwise multiple regression analyses demonstrated that cerebellar volume/cranial AP diameter and midbrain AP/cranial AP diameter were significantly associated with the total score and domain I sub-score of ICARS. We found no interactions between these two anatomical factors in the ICARS total and domain I sub-scores. The main effects of these two predictors were statistically significant both in total and domain I sub-scores (p = 0.001 and 0.022, respectively). CONCLUSIONS Cerebellar volume and midbrain AP diameter normalized to the cranial AP diameter were significantly correlated with the ICARS total and domain I sub-scores. Further longitudinal studies are warranted to explore the role of these MRI biomarkers for predicting disease progression.
Collapse
Affiliation(s)
- Daisuke Hara
- Department of Internal Medicine, Division of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Futaba Maki
- Department of Internal Medicine, Division of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Shigeaki Tanaka
- Department of Internal Medicine, Division of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Rie Sasaki
- Department of Internal Medicine, Division of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| | - Yasuhiro Hasegawa
- Department of Internal Medicine, Division of Neurology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa 216-8511 Japan
| |
Collapse
|
30
|
Yang Z, Abulnaga SM, Carass A, Kansal K, Jedynak BM, Onyike C, Ying SH, Prince JL. Landmark Based Shape Analysis for Cerebellar Ataxia Classification and Cerebellar Atrophy Pattern Visualization. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9784. [PMID: 27303111 DOI: 10.1117/12.2217313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, prognosis, and treatment planning. In this paper, we present a landmark based shape analysis pipeline to classify healthy control and different ataxia types and to visualize the characteristic cerebellar atrophy patterns associated with different types. A highly informative feature representation of the cerebellar structure is constructed by extracting dense homologous landmarks on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this representation is built using partial least square dimension reduction and regularized linear discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by sampling along the discriminant direction between healthy controls and the ataxia type. Experimental results show that the proposed method can successfully classify healthy controls and different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional volume decreases observed in previous studies, but the proposed method provides intuitive and detailed understanding about changes of overall size and shape of the cerebellum, as well as that of individual lobules.
Collapse
Affiliation(s)
- Zhen Yang
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - S Mazdak Abulnaga
- Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aaron Carass
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kalyani Kansal
- The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bruno M Jedynak
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chiadi Onyike
- The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah H Ying
- The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jerry L Prince
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
31
|
Abulnaga SM, Yang Z, Carass A, Kansal K, Jedynak BM, Onyike CU, Ying SH, Prince JL. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9785:97852P. [PMID: 28479655 PMCID: PMC5417711 DOI: 10.1117/12.2216584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
Collapse
Affiliation(s)
- S Mazdak Abulnaga
- Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Zhen Yang
- Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, USA
| | - Aaron Carass
- Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, USA
| | - Kalyani Kansal
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, USA
| | - Bruno M Jedynak
- Department of Mathematics and Statistics, Portland State University, Portland, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, USA
| | - Sarah H Ying
- Radiology, The Johns Hopkins School of Medicine, Baltimore, USA
| | - Jerry L Prince
- Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, USA
- Radiology, The Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
32
|
Rodríguez-Labrada R, Velázquez-Pérez L, Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J, Vázquez-Mojena Y, González-Zaldivar Y. Spinocerebellar ataxia type 2: Measures of saccade changes improve power for clinical trials. Mov Disord 2016; 31:570-8. [DOI: 10.1002/mds.26532] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 12/13/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Roberto Rodríguez-Labrada
- Department of Clinical Neurophysiology; Center for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
| | - Luis Velázquez-Pérez
- Department of Clinical Neurophysiology; Center for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
| | - Georg Auburger
- Section of Experimental Neurology, Department of Neurology; Goethe University Medical School; Frankfurt am Main Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research; University Tübingen; Tübingen Germany
| | - Nalia Canales-Ochoa
- Department of Clinical Neurophysiology; Center for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
| | - Jacqueline Medrano-Montero
- Department of Clinical Neurophysiology; Center for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
| | - Yaimeé Vázquez-Mojena
- Department of Molecular Neurobiology; Center for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
| | - Yanetza González-Zaldivar
- Department of Molecular Neurobiology; Center for the Research and Rehabilitation of Hereditary Ataxias; Holguín Cuba
| |
Collapse
|
33
|
Tan RH, Kril JJ, McGinley C, Hassani M, Masuda-Suzukake M, Hasegawa M, Mito R, Kiernan MC, Halliday GM. Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions. Ann Neurol 2016; 79:295-305. [DOI: 10.1002/ana.24565] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/03/2015] [Accepted: 11/15/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Rachel H Tan
- Neuroscience Research Australia; Sydney Australia
- School of Medical Sciences; University of New South Wales; Sydney Australia
| | - Jillian J Kril
- Discipline of Pathology, Sydney Medical School; The University of Sydney; Sydney Australia
| | - Ciara McGinley
- Discipline of Pathology, Sydney Medical School; The University of Sydney; Sydney Australia
| | | | - Masami Masuda-Suzukake
- Department of Neuropathology and Cell Biology; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Remika Mito
- Discipline of Pathology, Sydney Medical School; The University of Sydney; Sydney Australia
| | - Matthew C Kiernan
- Brain and Mind Center, Sydney Medical School; The University of Sydney; Sydney Australia
| | - Glenda M Halliday
- Neuroscience Research Australia; Sydney Australia
- School of Medical Sciences; University of New South Wales; Sydney Australia
| |
Collapse
|
34
|
Manto M, Habas C. Cerebellar disorders: clinical/radiologic findings and modern imaging tools. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:479-491. [PMID: 27432679 DOI: 10.1016/b978-0-444-53485-9.00023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cerebellar disorders, also called cerebellar ataxias, comprise a large group of sporadic and genetic diseases. Their core clinical features include impaired control of coordination and gait, as well as cognitive/behavioral deficits usually not detectable by a standard neurologic examination and therefore often overlooked. Two forms of cognitive/behavioral syndromes are now well identified: (1) the cerebellar cognitive affective syndrome, which combines an impairment of executive functions, including planning and working memory, deficits in visuospatial skills, linguistic deficiencies such as agrammatism, and inappropriate behavior; and (2) the posterior fossa syndrome, a very acute form of cerebellar cognitive affective syndrome occurring essentially in children. Sporadic ataxias include stroke, toxic causes, immune ataxias, infectious/parainfectious ataxias, traumatic causes, neoplasias and paraneoplastic syndromes, endocrine disorders affecting the cerebellum, and the so-called "degenerative ataxias" (multiple system atrophy, and sporadic adult-onset ataxias). Genetic ataxias include mainly four groups of disorders: autosomal-recessive cerebellar ataxias, autosomal-dominant ataxias (spinocerebellar ataxias and episodic ataxias), mitochondrial disorders, and X-linked ataxias. In addition to biochemical studies and genetic tests, brain imaging techniques are a cornerstone for the diagnosis, clinicoanatomic correlations, and follow-up of cerebellar ataxias. Modern radiologic tools to assess cerebellar ataxias include: functional imaging studies, magnetic resonance spectroscopy, volumetric studies, and tractography. These complementary methods provide a multimodal appreciation of the whole long-range cerebellar network functioning, and allow the extraction of potential biomarkers for prognosis and rating level of recovery after treatment.
Collapse
Affiliation(s)
- Mario Manto
- Department of Neurology, Université Libre de Bruxelles Erasme, Brussels, Belgium.
| | - Christophe Habas
- Neuroimaging Service, Centre National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
35
|
Yang Z, Ye C, Bogovic JA, Carass A, Jedynak BM, Ying SH, Prince JL. Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. Neuroimage 2015; 127:435-444. [PMID: 26408861 DOI: 10.1016/j.neuroimage.2015.09.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022] Open
Abstract
The cerebellum plays an important role in both motor control and cognitive function. Cerebellar function is topographically organized and diseases that affect specific parts of the cerebellum are associated with specific patterns of symptoms. Accordingly, delineation and quantification of cerebellar sub-regions from magnetic resonance images are important in the study of cerebellar atrophy and associated functional losses. This paper describes an automated cerebellar lobule segmentation method based on a graph cut segmentation framework. Results from multi-atlas labeling and tissue classification contribute to the region terms in the graph cut energy function and boundary classification contributes to the boundary term in the energy function. A cerebellar parcellation is achieved by minimizing the energy function using the α-expansion technique. The proposed method was evaluated using a leave-one-out cross-validation on 15 subjects including both healthy controls and patients with cerebellar diseases. Based on reported Dice coefficients, the proposed method outperforms two state-of-the-art methods. The proposed method was then applied to 77 subjects to study the region-specific cerebellar structural differences in three spinocerebellar ataxia (SCA) genetic subtypes. Quantitative analysis of the lobule volumes shows distinct patterns of volume changes associated with different SCA subtypes consistent with known patterns of atrophy in these genetic subtypes.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Chuyang Ye
- Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation, The Chinese Academy of Sciences, Beijing 100190, China
| | - John A Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bruno M Jedynak
- Department of Applied Math and Statistics, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah H Ying
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Applied Math and Statistics, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
36
|
Cocozza S, Saccà F, Cervo A, Marsili A, Russo CV, Giorgio SMDA, De Michele G, Filla A, Brunetti A, Quarantelli M. Modifications of resting state networks in spinocerebellar ataxia type 2. Mov Disord 2015; 30:1382-90. [PMID: 26094751 DOI: 10.1002/mds.26284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/13/2015] [Accepted: 05/11/2015] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We aimed to investigate the integrity of the Resting State Networks in spinocerebellar ataxia type 2 (SCA2) and the correlations between the modification of these networks and clinical variables. METHODS Resting-state functional magnetic resonance imaging (RS-fMRI) data from 19 SCA2 patients and 29 healthy controls were analyzed using an independent component analysis and dual regression, controlling at voxel level for the effect of atrophy by co-varying for gray matter volume. Correlations between the resting state networks alterations and disease duration, age at onset, number of triplets, and clinical score were assessed by Spearman's coefficient, for each cluster which was significantly different in SCA2 patients compared with healthy controls. RESULTS In SCA2 patients, disruption of the cerebellar components of all major resting state networks was present, with supratentorial involvement only for the default mode network. When controlling at voxel level for gray matter volume, the reduction in functional connectivity in supratentorial regions of the default mode network, and in cerebellar regions within the default mode, executive and right fronto-parietal networks, was still significant. No correlations with clinical variables were found for any of the investigated resting state networks. CONCLUSIONS The SCA2 patients show significant alterations of the resting state networks, only partly explained by the atrophy. The default mode network is the only resting state network that shows also supratentorial changes, which appear unrelated to the cortical gray matter volume. Further studies are needed to assess the clinical significance of these changes.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Amedeo Cervo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Angela Marsili
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Cinzia Valeria Russo
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | | | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
| |
Collapse
|
37
|
Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology 2015; 85:96-103. [DOI: 10.1212/wnl.0000000000001711] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
|
38
|
Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 2015; 23:441-58. [PMID: 24816443 DOI: 10.3727/096368914x678454] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polyglutamine (polyQ) diseases are a group of neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding a long polyQ tract in the respective proteins. To date, a total of nine polyQ disorders have been described: six spinocerebellar ataxias (SCA) types 1, 2, 6, 7, 17; Machado-Joseph disease (MJD/SCA3); Huntington's disease (HD); dentatorubral pallidoluysian atrophy (DRPLA); and spinal and bulbar muscular atrophy, X-linked 1 (SMAX1/SBMA). PolyQ diseases are characterized by the pathological expansion of CAG trinucleotide repeat in the translated region of unrelated genes. The translated polyQ is aggregated in the degenerated neurons leading to the dysfunction and degeneration of specific neuronal subpopulations. Although animal models of polyQ disease for understanding human pathology and accessing disease-modifying therapies in neurodegenerative diseases are available, there is neither a cure nor prevention for these diseases, and only symptomatic treatments for polyQ diseases currently exist. Long-term pharmacological treatment is so far disappointing, probably due to unwanted complications and decreasing drug efficacy. Cellular transplantation of stem cells may provide promising therapeutic avenues for restoration of the functions of degenerative and/or damaged neurons in polyQ diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Scripko P, Oaklander AL, Koeppen AH, Frosch MP, Schmahmann JD. A 40-year-old woman with difficulty going down stairs in high-heeled shoes. Ann Neurol 2015; 77:1-7. [PMID: 25380064 DOI: 10.1002/ana.24301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Patricia Scripko
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | | | | | | | |
Collapse
|
40
|
Chen HC, Lirng JF, Soong BW, Guo WY, Wu HM, Chen CCC, Chang CY. The merit of proton magnetic resonance spectroscopy in the longitudinal assessment of spinocerebellar ataxias and multiple system atrophy-cerebellar type. CEREBELLUM & ATAXIAS 2014; 1:17. [PMID: 26331041 PMCID: PMC4552155 DOI: 10.1186/s40673-014-0017-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/26/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) and multiple system atrophy-cerebellar type (MSA-C) often present with similar clinical manifestations in the beginning. Magnetic resonance spectroscopy (MRS) has been proved to be a useful tool to help differentiate different types of SCA and MSA-C on cross-sectional studies. However, longitudinal changes of the MRS metabolites in these subjects have never been reported. The purpose of this study was to track the longitudinal evolution of the MRS metabolites in these patients and to ascertain the correlation between clinical severity measured by Scale of the Assessment and Rating of Ataxia (SARA) and MRS metabolites. RESULTS Significant reductions of NAA/Cr and NAA/Cho in the cerebellar hemispheres in all patients and lower Cho/Cr in the cerebellar hemispheres in patients with SCA2 or MSA-C were found at all times. At initial assessments, patients with MSA-C or SCA2 tended to have lower NAA/Cr and Cho/Cr in the cerebellar hemispheres than those with SCA3 or SCA6. At follow-ups, patients with SCA2 or MSA-C had a lower NAA/Cr in cerebellar hemispheres than those with SCA3 or SCA6. Patients with MSA-C had a lower NAA/Cr in the vermis and Cho/Cr in the cerebellar hemispheres than those with SCA2 at the start, and had a lower NAA/Cr in cerebellar hemispheres than those with SCA2 at follow-ups. CONCLUSION Characteristic patterns of neurodegenerative evolution were observed in patients with disparate SCAs and MSA-C using MRS and SARA. A continual impairment of neuronal integrity was observed in all groups of patients. The longitudinal changes of MRS metabolites and SARA scores were most striking in patients with SCA2 and MSA-C. Although the changes in the metabolites on MRS may still be used to help understand the pathophysiology of ataxia disorders, they are short of being a good biomarker.
Collapse
Affiliation(s)
- Hung-Chieh Chen
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, Taiwan ; Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, Taiwan ; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, National Yang-Ming University School of Medicine and Taipei Veterans General Hospital, 155, Sec. 2, Linung St, Taipei, Taiwan ; Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan Yuo Guo
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, Taiwan ; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, Taiwan ; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Clayton Chi-Chang Chen
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, Taiwan ; Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Yen Chang
- Department of Radiology, National Yang-Ming University School of Medicine, Taipei, Taiwan ; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Recessive spinocerebellar ataxia with paroxysmal cough attacks: a report of five cases. THE CEREBELLUM 2014; 13:215-21. [PMID: 24097205 DOI: 10.1007/s12311-013-0526-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary ataxias are a heterogeneous group of neurological diseases characterized by progressive cerebellar syndrome and numerous other features, which result in great diversity of ataxia subtypes. Despite the characterization of a number of both autosomal dominant and autosomal recessive ataxias, it is thought that a large group of these conditions remains to be identified. In this study, we report the characterization of five patients (three Mexicans and two Italians) who exhibit a peculiar form of recessive ataxia associated with coughing. The main clinical and neurophysiological features of these patients include cerebellar ataxia, paroxysmal cough, restless legs syndrome (RLS), choreic movements, atrophy of distal muscles, and oculomotor disorders. Brain magnetic resonance imaging (MRI) revealed cerebellar atrophy, while video polysomnography (VPSG) studies showed a severe pattern of breathing-related sleep disorder, including sleep apnea, snoring, and significant oxygen saturation in the absence of risk factors. All patients share clinical features in the peripheral nervous system, including reduction of amplitude and prolonged latency of sensory potentials in median and sural nerves. Altogether, clinical criteria as well as molecular genetic testing that was negative for different autosomal dominant and autosomal recessive ataxias suggest the presence of a new form of recessive ataxia. This ataxia, in which cerebellar signs are preceded by paroxysmal cough, affects not only the cerebellum and its fiber connections, but also the sensory peripheral nervous system and extracerebellar central pathways.
Collapse
|
42
|
Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2014; 8679:68-76. [PMID: 25553339 DOI: 10.1007/978-3-319-10581-9_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cerebellar ataxia is a progressive neuro-degenerative disease that has multiple genetic versions, each with a characteristic pattern of anatomical degeneration that yields distinctive motor and cognitive problems. Studying this pattern of degeneration can help with the diagnosis of disease subtypes, evaluation of disease stage, and treatment planning. In this work, we propose a learning framework using MR image data for discriminating a set of cerebellar ataxia types and predicting a disease related functional score. We address the difficulty in analyzing high-dimensional image data with limited training subjects by: 1) training weak classifiers/regressors on a set of image subdomains separately, and combining the weak classifier/regressor outputs to make the decision; 2) perturbing the image subdomain to increase the training samples; 3) using a deep learning technique called the stacked auto-encoder to develop highly representative feature vectors of the input data. Experiments show that our approach can reliably classify between one of four categories (healthy control and three types of ataxia), and predict the functional staging score for ataxia.
Collapse
|
43
|
Salvatore E, Tedeschi E, Mollica C, Vicidomini C, Varrone A, Coda ARD, Brunetti A, Salvatore M, De Michele G, Filla A, Pappatà S. Supratentorial and infratentorial damage in spinocerebellar ataxia 2: a diffusion-weighted MRI study. Mov Disord 2013; 29:780-6. [PMID: 24375449 DOI: 10.1002/mds.25757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal-dominant degenerative disorder that is neuropathologically characterized primarily by infratentorial damage, although less severe supratentorial involvement may contribute to the clinical manifestation. Diffusion-weighted imaging (DWI)-Magnetic Resonance Imaging (MRI) studies of SCA2 have enabled in vivo quantification of neurodegeneration in infratentorial regions, whereas supratentorial regions have been explored less thoroughly. We measured microstructural changes in both infratentorial and supratentorial regions in 13 SCA2 patients (9 men, 4 women; mean age, 50 ± 12 years) and 15 controls (10 men, 5 women; mean age, 49 ± 14 years) using DWI-MRI and correlated the DWI changes with disease severity and duration. Disease severity was evaluated using the International Cooperative Ataxia Rating Scale and the Inherited Ataxia Clinical Rating Scale. Cerebral diffusion trace ( D¯) values were generated, and regions of interest (ROIs) and voxel-based analysis with Statistical Parametric Mapping (SPM) were used for data analysis. In SCA2 patients, ROI analysis and SPM confirmed significant increases in D¯ values in the pons, cerebellar white matter (CWM) and middle cerebellar peduncles. Moreover, SPM analysis revealed increased D¯ values in the right thalamus, bilateral temporal cortex/white matter, and motor cortex/pyramidal tract regions. Increased diffusivity in the frontal white matter (FWM) and the CWM was significantly correlated with ataxia severity. DWI-MRI revealed that both infratentorial and supratentorial microstructural changes may characterize SCA2 patients in the course of the disease and might contribute to the severity of the symptoms.
Collapse
Affiliation(s)
- Elena Salvatore
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jung BC, Choi SI, Du AX, Cuzzocreo JL, Geng ZZ, Ying HS, Perlman SL, Toga AW, Prince JL, Ying SH. Principal component analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two archetypal modes of degeneration. THE CEREBELLUM 2013; 11:887-95. [PMID: 22258915 DOI: 10.1007/s12311-011-0334-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although "cerebellar ataxia" is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes.
Collapse
Affiliation(s)
- Brian C Jung
- Department of Neurology, The Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bogovic JA, Jedynak B, Rigg R, Du A, Landman BA, Prince JL, Ying SH. Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters. Neuroimage 2012; 64:616-29. [PMID: 22975160 DOI: 10.1016/j.neuroimage.2012.08.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 12/15/2022] Open
Abstract
Volumetric measurements obtained from image parcellation have been instrumental in uncovering structure-function relationships. However, anatomical study of the cerebellum is a challenging task. Because of its complex structure, expert human raters have been necessary for reliable and accurate segmentation and parcellation. Such delineations are time-consuming and prohibitively expensive for large studies. Therefore, we present a three-part cerebellar parcellation system that utilizes multiple inexpert human raters that can efficiently and expediently produce results nearly on par with those of experts. This system includes a hierarchical delineation protocol, a rapid verification and evaluation process, and statistical fusion of the inexpert rater parcellations. The quality of the raters' and fused parcellations was established by examining their Dice similarity coefficient, region of interest (ROI) volumes, and the intraclass correlation coefficient of region volume. The intra-rater ICC was found to be 0.93 at the finest level of parcellation.
Collapse
Affiliation(s)
- John A Bogovic
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|