1
|
Jenei AZ, Sztahó D, Valálik I. Recognition analysis of spiral and straight-line drawings in tremor assessment. BIOMED ENG-BIOMED TE 2024:bmt-2023-0080. [PMID: 39602901 DOI: 10.1515/bmt-2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES No standard, objective diagnostic procedure exists for most neurological diseases causing tremors. Therefore, drawing tests have been widely analyzed to support diagnostic procedures. In this study, we examine the comparison of Archimedean spiral and line drawings, the possibilities of their joint application, and the relevance of displaying pressure on the drawings to recognize Parkinsonism and cerebellar dysfunction. We further attempted to use an automatic processing and evaluation system. METHODS Digital images were developed from raw data by adding or omitting pressure data. Pre-trained (MobileNet, Xception, ResNet50) models and a Baseline (from scratch) model were applied for binary classification with a fold cross-validation procedure. Predictions were analyzed separately by drawing tasks and in combination. RESULTS The neurological diseases presented here can be recognized with a significantly higher macro f1 score from the spiral drawing task (up to 95.7 %) than lines (up to 84.3 %). A significant improvement can be achieved if the spiral is supplemented with line drawing. The pressure inclusion in the images did not result in significant information gain. CONCLUSIONS The spiral drawing has a robust recognition power and can be supplemented with a line drawing task to increase the correct recognition. Moreover, X and Y coordinates appeared sufficient without pressure with this methodology.
Collapse
Affiliation(s)
- Attila Z Jenei
- Department of Telecommunications and Artificial Intelligence, 61810 Budapest University of Technology and Economics , Budapest, Hungary
| | - Dávid Sztahó
- Department of Telecommunications and Artificial Intelligence, 61810 Budapest University of Technology and Economics , Budapest, Hungary
| | - István Valálik
- Department of Neurosurgery, St. John's Hospital, Budapest, Hungary
| |
Collapse
|
2
|
Serrano-Dueñas M. Severe and unclassifiable tremor. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-5. [PMID: 39396518 DOI: 10.1055/s-0044-1790196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND Patients often exhibit very severe or disabling forms of tremor that cannot be clearly characterized. OBJECTIVE To present a series of 37 cases of tremor considered unclassifiable. Patients diagnosed with essential tremor according to criteria of the International Parkinson Disease and Movement Disorder Society (IPDMDS), who had been previously studied, were included as controls. All patients underwent a battery of tests between 2019 and 2022, which enabled us to compare them. METHODS Relevant demographic and clinical information were collected. The following tools were applied: the Mini-Mental State Examination (MMSE); the Hospital Anxiety and Depression Scale (HADS); the Fahn-Tolosa-Marín Tremor Rating Scale (TRS); and the Quality of Life in Essential Tremor (QUEST). A simple brain magnetic resonance imaging (MRI) scan was performed for all patients. The categorical variables were compared using the Chi-squared test and the t-test with Fisher correction if appropriate, and the quantitative variables were compared through the two-tailed Student t-test. Values of p ≤ 0.01 were considered statistically significant. RESULTS The cases presented higher scores on the anxiety and depression subscales of the HADS than the controls (p ≤ 0.006 and 0.000 respectively). In all domains of the TRS, the cases scored significantly higher, as well as in the QUEST. History of enolism was higher among the controls, and history of orthostasis and rest tremor was higher among the cases (p ≤ 0.000). Cerebellar atrophy was present in every patient in the case group, and in 24 subjects in the control group. Dystonia was observed in 7 subjects in the case group, and in none of the patients in the control group. CONCLUSION There are patients with unclassifiable and extremely disabling tremors who respond poorly to the pharmacological therapy options.
Collapse
|
3
|
Yilmaz A, Eray HA, Cakir M, Ceylan M, Blomstedt P. Deep Brain Stimulation with Double Targeting of the VIM and PSA for the Treatment of Rare Tremor Syndromes. Stereotact Funct Neurosurg 2024; 102:224-239. [PMID: 38934181 DOI: 10.1159/000539162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION In tremor syndromes, pharmacological therapy is the primary treatment, but deep brain stimulation (DBS) is used when it is insufficient. We explore the use of DBS, focusing on the globus pallidus internus for dystonia and the ventral intermediate nucleus (VIM) for tremor conditions. We introduce the posterior subthalamic area (PSA) as a potential target, suggesting its efficacy in tremor reduction, particularly in rare tremor syndromes. We aim to evaluate the efficacy and safety of double targeting the VIM and PSA in rare tremor conditions, highlighting the limited existing data on this. METHODS Between 2019 and 2023, 22 patients with rare tremor syndromes were treated with bilateral DBS of the VIM and PSA. This case series consisted of 7 isolated head tremor, 1 hepatic encephalopathic tremor due to Abernethy syndrome, 2 voice tremor, 4 dystonic tremor, and 8 Holmes tremor (2 multiple sclerosis, 2 cerebellar insult, and 4 posttraumatic) patients. Patients' preoperative and 12-month postoperative tremor scores were compared, and the optimum VIM and PSA stimulation areas were investigated. RESULTS There was a significant reduction in the mean TRS score from 3.70 (±0.57) to 0.45 (±0.68) after 12 months of surgery. Specific outcomes for different indications were observed: for head tremor, 6 of 7 patients showed a reduction in TRS scores to 0 points; the vocal tremor patients demonstrated improvement; this change was not statistically significant, which is likely to be due to the low number of patients in this subgroup; the dystonic tremor patients showed either complete tremor abolition or a reduction in TRS scores; the Holmes tremor patients showed an 80% reduction in TRS scores; and the hepatic encephalopathy tremor and Abernethy syndrome patients showed a 75% improvement in TRS scores. The stimulation parameters converged on the VIM and dorsal PSA. Complications included the need for electrode repositioning, infections requiring electrode removal and re-implantation, dysarthria, and stimulation-induced ataxia, which was resolved by adjusting the stimulation parameters. DISCUSSION The literature on DBS for rare tremors is limited. Double targeting of the VIM and PSA appears to produce promising improvements on the outcomes reported in the existing literature on VIM-only DBS. The proximity of the VIM and PSA allows for flexible electrode placement, contributing to the potential success of the dual-target approach. We also discuss the theoretical advantages of targeting the PSA based on the distribution of tremor circuits, emphasizing the need for further research and electrophysiological studies.
Collapse
Affiliation(s)
- Atilla Yilmaz
- Department of Neurosurgery, Istanbul Health and Technology University, Istanbul, Turkey
| | - Halit Anıl Eray
- Ankara University School of Medicine, Department of Neurosurgery, Ankara, Turkey,
| | - Murtaza Cakir
- Ataturk University Faculty of Medicine, Department of Neurosurgery, Erzurum, Turkey
| | - Mustafa Ceylan
- Ataturk University Faculty of Medicine, Department of Neurology, Erzurum, Turkey
| | | |
Collapse
|
4
|
Hermle D, Schubert R, Barallon P, Ilg W, Schüle R, Reilmann R, Synofzik M, Traschütz A. Multifeature quantitative motor assessment of upper limb ataxia including drawing and reaching. Ann Clin Transl Neurol 2024; 11:1097-1109. [PMID: 38590028 DOI: 10.1002/acn3.52024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE Voluntary upper limb movements are an ecologically important yet insufficiently explored digital-motor outcome domain for trials in degenerative ataxia. We extended and validated the trial-ready quantitative motor assessment battery "Q-Motor" for upper limb movements with clinician-reported, patient-focused, and performance outcomes of ataxia. METHODS Exploratory single-center cross-sectional assessment in 94 subjects (46 cross-genotype ataxia patients; 48 matched controls), comprising five tasks measured by force transducer and/or position field: Finger Tapping, diadochokinesia, grip-lift, and-as novel implementations-Spiral Drawing, and Target Reaching. Digital-motor measures were selected if they discriminated from controls (AUC >0.7) and correlated-with at least one strong correlation (rho ≥0.6)-to the Scale for the Assessment and Rating of Ataxia (SARA), activities of daily living (FARS-ADL), and the Nine-Hole Peg Test (9HPT). RESULTS Six movement features with 69 measures met selection criteria, including speed and variability in all tasks, stability in grip-lift, and efficiency in Target Reaching. The novel drawing/reaching tasks best captured impairment in dexterity (|rho9HPT| ≤0.81) and FARS-ADL upper limb items (|rhoADLul| ≤0.64), particularly by kinematic analysis of smoothness (SPARC). Target hit rate, a composite of speed and endpoint precision, almost perfectly discriminated ataxia and controls (AUC: 0.97). Selected measures in all tasks discriminated between mild, moderate, and severe impairment (SARA upper limb composite: 0-2/>2-4/>4-6) and correlated with severity in the trial-relevant mild ataxia stage (SARA ≤10, n = 20). INTERPRETATION Q-Motor assessment captures multiple features of impaired upper limb movements in degenerative ataxia. Validation with key clinical outcome domains provides the basis for evaluation in longitudinal studies and clinical trial settings.
Collapse
Affiliation(s)
- Dominik Hermle
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | | | | | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Rebecca Schüle
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division of Neurodegenerative Disease, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Münster, Germany
- Department of Neurodegenerative Diseases, Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Andreas Traschütz
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
5
|
Abstract
The approach and diagnosis of patients with tremor may be challenging for clinicians. According to the most recent consensus statement by the Task Force on Tremor of the International Parkinson Movement Disorder Society, the differentiation between action (i.e., kinetic, postural, intention), resting, and other task- and position-specific tremors is crucial to this goal. In addition, patients with tremor must be carefully examined for other relevant features, including the topography of the tremor, since it can involve different body areas and possibly associate with neurological signs of uncertain significance. Following the characterization of major clinical features, it may be useful to define, whenever possible, a particular tremor syndrome and to narrow down the spectrum of possible etiologies. First, it is important to distinguish between physiological and pathological tremor, and, in the latter case, to differentiate between the underlying pathological conditions. A correct approach to tremor is particularly relevant for appropriate referral, counseling, prognosis definition, and therapeutic management of patients. The purpose of this review is to outline the possible diagnostic uncertainties that may be encountered in clinical practice in the approach to patients with tremor. In addition to an emphasis on a clinical approach, this review discusses the important ancillary role of neurophysiology and innovative technologies, neuroimaging, and genetics in the diagnostic process.
Collapse
Affiliation(s)
- Luca Marsili
- Department of Neurology and Rehabilitation Medicine, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Abhimanyu Mahajan
- Rush Parkinson's Disease and Movement Disorders Program, Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
6
|
Frei K, Truong DD. Medications used to treat tremors. J Neurol Sci 2022; 435:120194. [DOI: 10.1016/j.jns.2022.120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
|
7
|
Lee A, Sarva H. Approach to Tremor Disorders. Semin Neurol 2021; 41:731-743. [PMID: 34826875 DOI: 10.1055/s-0041-1726356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tremor disorders are diverse and complex. Historical clues and examination features play a major role in diagnosing these disorders, but diagnosis can be challenging due to phenotypic overlap. Ancillary testing, such as neuroimaging or laboratory testing, is driven by the history and examination, and should be performed particularly when there are other neurological or systemic manifestations. The pathophysiology of tremor is not entirely understood, but likely involves multiple networks along with the cerebello-thalamo-cortical pathways. Treatment options include medications, botulinum toxin, surgery, and nonpharmacologic interventions utilizing physical and occupational therapies and assistive devices. Further work is needed in developing accurate diagnostic tests and better treatment options for tremor disorders.
Collapse
Affiliation(s)
- Andrea Lee
- Parkinson's Disease and Movement Disorders Institute, Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, New York
| | - Harini Sarva
- Parkinson's Disease and Movement Disorders Institute, Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
8
|
Smoothness metrics for reaching performance after stroke. Part 1: which one to choose? J Neuroeng Rehabil 2021; 18:154. [PMID: 34702281 PMCID: PMC8549250 DOI: 10.1186/s12984-021-00949-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Background Smoothness is commonly used for measuring movement quality of the upper paretic limb during reaching tasks after stroke. Many different smoothness metrics have been used in stroke research, but a ‘valid’ metric has not been identified. A systematic review and subsequent rigorous analysis of smoothness metrics used in stroke research, in terms of their mathematical definitions and response to simulated perturbations, is needed to conclude whether they are valid for measuring smoothness. Our objective was to provide a recommendation for metrics that reflect smoothness after stroke based on: (1) a systematic review of smoothness metrics for reaching used in stroke research, (2) the mathematical description of the metrics, and (3) the response of metrics to simulated changes associated with smoothness deficits in the reaching profile.
Methods The systematic review was performed by screening electronic databases using combined keyword groups Stroke, Reaching and Smoothness. Subsequently, each metric identified was assessed with mathematical criteria regarding smoothness: (a) being dimensionless, (b) being reproducible, (c) being based on rate of change of position, and (d) not being a linear transform of other smoothness metrics. The resulting metrics were tested for their response to simulated changes in reaching using models of velocity profiles with varying reaching distances and durations, harmonic disturbances, noise, and sub-movements. Two reaching tasks were simulated; reach-to-point and reach-to-grasp. The metrics that responded as expected in all simulation analyses were considered to be valid. Results The systematic review identified 32 different smoothness metrics, 17 of which were excluded based on mathematical criteria, and 13 more as they did not respond as expected in all simulation analyses. Eventually, we found that, for reach-to-point and reach-to-grasp movements, only Spectral Arc Length (SPARC) was found to be a valid metric. Conclusions Based on this systematic review and simulation analyses, we recommend the use of SPARC as a valid smoothness metric in both reach-to-point and reach-to-grasp tasks of the upper limb after stroke. However, further research is needed to understand the time course of smoothness measured with SPARC for the upper limb early post stroke, preferably in longitudinal studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00949-6.
Collapse
|
9
|
Kakei S, Manto M, Tanaka H, Mitoma H. Pathophysiology of Cerebellar Tremor: The Forward Model-Related Tremor and the Inferior Olive Oscillation-Related Tremor. Front Neurol 2021; 12:694653. [PMID: 34262527 PMCID: PMC8273235 DOI: 10.3389/fneur.2021.694653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Lesions in the Guillain-Mollaret (G-M) triangle frequently cause various types of tremors or tremor-like movements. Nevertheless, we know relatively little about their generation mechanisms. The deep cerebellar nuclei (DCN), which is a primary node of the triangle, has two main output paths: the primary excitatory path to the thalamus, the red nucleus (RN), and other brain stem nuclei, and the secondary inhibitory path to the inferior olive (IO). The inhibitory path contributes to the dentato-olivo-cerebellar loop (the short loop), while the excitatory path contributes to the cerebrocerebellar loop (the long loop). We propose a novel hypothesis: each loop contributes to physiologically distinct type of tremors or tremor-like movements. One type of irregular tremor-like movement is caused by a lesion in the cerebrocerebellar loop, which includes the primary path. A lesion in this loop affects the cerebellar forward model and deteriorates its accuracy of prediction and compensation of the feedback delay, resulting in irregular instability of voluntary motor control, i.e., cerebellar ataxia (CA). Therefore, this type of tremor, such as kinetic tremor, is usually associated with other symptoms of CA such as dysmetria. We call this type of tremor forward model-related tremor. The second type of regular tremor appears to be correlated with synchronized oscillation of IO neurons due, at least in animal models, to reduced degrees of freedom in IO activities. The regular burst activity of IO neurons is precisely transmitted along the cerebellocerebral path to the motor cortex before inducing rhythmical reciprocal activities of agonists and antagonists, i.e., tremor. We call this type of tremor IO-oscillation-related tremor. Although this type of regular tremor does not necessarily accompany ataxia, the aberrant IO activities (i.e., aberrant CS activities) may induce secondary maladaptation of cerebellar forward models through aberrant patterns of long-term depression (LTD) and/or long-term potentiation (LTP) of the cerebellar circuitry. Although our hypothesis does not cover all tremors or tremor-like movement disorders, our approach integrates the latest theories of cerebellar physiology and provides explanations how various lesions in or around the G-M triangle results in tremors or tremor-like movements. We propose that tremor results from errors in predictions carried out by the cerebellar circuitry.
Collapse
Affiliation(s)
- Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women's University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Tokyo, Japan
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
10
|
Ibrahim MF, Beevis JC, Empson RM. Essential Tremor - A Cerebellar Driven Disorder? Neuroscience 2020; 462:262-273. [PMID: 33212218 DOI: 10.1016/j.neuroscience.2020.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal tremors are the most common of all movement disorders. In this review we focus on the role of the cerebellum in Essential Tremor, a highly debilitating but poorly treated movement disorder. We propose a variety of mechanisms driving abnormal burst firing of deep cerebellar nuclei neurons as a key initiator of tremorgenesis in Essential Tremor. Targetting these mechanisms may generate more effective treatments for Essential Tremor.
Collapse
Affiliation(s)
- Mohamed Fasil Ibrahim
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand.
| | - Jessica C Beevis
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Ruth M Empson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
11
|
Nietz A, Krook-Magnuson C, Gutierrez H, Klein J, Sauve C, Hoff I, Christenson Wick Z, Krook-Magnuson E. Selective loss of the GABA Aα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020; 124:1183-1197. [PMID: 32902350 DOI: 10.1152/jn.00100.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, an essential tremor-like phenotype has been noted in animals with a global knockout of the GABAAα1 subunit. Given the hypothesized role of the cerebellum in tremor, including essential tremor, we used transgenic mice to selectively knock out the GABAAα1 subunit from cerebellar Purkinje cells. We examined the resulting phenotype regarding impacts on inhibitory postsynaptic currents, survival rates, gross motor abilities, and expression of tremor. Purkinje cell specific knockout of the GABAAα1 subunit abolished all GABAA-mediated inhibition in Purkinje cells, while leaving GABAA-mediated inhibition to cerebellar molecular layer interneurons intact. Selective loss of GABAAα1 from Purkinje cells did not produce deficits on the accelerating rotarod, nor did it result in decreased survival rates. However, a tremor phenotype was apparent, regardless of sex or background strain. This tremor mimicked the tremor seen in animals with a global knockout of the GABAAα1 subunit, and, like essential tremor in patients, was responsive to ethanol. These findings indicate that reduced inhibition to Purkinje cells is sufficient to induce a tremor phenotype, highlighting the importance of the cerebellum, inhibition, and Purkinje cells in tremor.NEW & NOTEWORTHY Animals with a global knockout of the GABAAα1 subunit show a tremor phenotype reminiscent of essential tremor. Here we show that selective knockout of GABAAα1 from Purkinje cells is sufficient to produce a tremor phenotype, although this tremor is less severe than seen in animals with a global knockout. These findings illustrate that the cerebellum can play a key role in the genesis of the observed tremor phenotype.
Collapse
Affiliation(s)
- Angela Nietz
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | - Haruna Gutierrez
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Julia Klein
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Clarke Sauve
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Isaac Hoff
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | | |
Collapse
|
12
|
León Ruiz M, Benito-León J. The Top 50 Most-Cited Articles in Orthostatic Tremor: A Bibliometric Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-679. [PMID: 31413901 PMCID: PMC6691913 DOI: 10.7916/tohm.v0.679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Abstract
Background Article-level citation count is a hallmark indicating scientific impact. We aimed to pinpoint and evaluate the top 50 most-cited articles in orthostatic tremor (OT). Methods The ISI Web of Knowledge database and 2017 Journal Citation Report Science Edition were used to retrieve the 50 top-cited OT articles published from 1984 to April 2019. Information was collected by the Analyze Tool on the Web of Science, including number of citations, publication title, journal name, publication year, and country and institution of origin. Supplementary analyses were undertaken to clarify authorship, study design, level of evidence, and category. Results Up to 66% of manuscripts were recovered from five journals: Movement Disorders (n = 18), Brain (n = 4), Journal of Clinical Neurophysiology (n = 4), Neurology (n = 4), and Clinical Neurophysiology (n = 3). Articles were published between 1984 and 2018, with expert opinion as the predominant design (n = 22) and review as category (n = 17). Most articles had level 5 evidence (n = 26). According to their countries of origin, 34% of articles belonged to the United States (n = 17) leading the list, followed by United Kingdom (n = 15). University College London yielded the greater number of articles (n = 12), followed by the University of Kiel (n = 9). Most popular authors were G. Deuschl (n = 10), C.D. Marsden (n = 6), J. Jankovic (n = 5), P.D. Thompson (n = 5), J.C. Rothwell (n = 5), L.J. Findley (n = 4), and P. Brown (n = 4), who together accounted for 48% of them. All papers were in English. Discussion Publishing high-cited OT articles could be facilitated by source journal, study design, category, publication language, and country and institution of origin.
Collapse
Affiliation(s)
| | - Julián Benito-León
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, ES.,Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, ES.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, ES
| |
Collapse
|