1
|
Magalhães TNC, Hicks TH, Jackson TB, Ballard HK, Herrejon IA, Bernard JA. Sex-steroid hormones relate to cerebellar structure and functional connectivity across adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600454. [PMID: 38979355 PMCID: PMC11230255 DOI: 10.1101/2024.06.24.600454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Aging involves complex biological changes that affect disease susceptibility and aging trajectories. Although females typically live longer than males, they have a higher susceptibility to diseases like Alzheimer's, speculated to be influenced by menopause, and reduced ovarian hormone production. Understanding sex-specific differences is crucial for personalized medical interventions and gender equality in health. Our study aims to elucidate sex differences in regional cerebellar structure and connectivity during normal aging by investigating both structural and functional connectivity variations, with a focus on investigating these differences in the context of sex-steroid hormones. The study included 138 participants (mean age = 57(13.3) years, age range = 35-86 years, 54% women). The cohort was divided into three groups: 38 early middle-aged individuals (EMA) (mean age = 41(4.7) years), 48 late middle-aged individuals (LMA) (mean age = 58(4) years), and 42 older adults (OA) (mean age = 72(6.3) years). All participants underwent MRI scans, and saliva samples were collected for sex-steroid hormone quantification (17β-estradiol (E), progesterone (P), and testosterone (T)). We found less connectivity in females between Lobule I-IV and the cuneus, and greater connectivity in females between Crus I, Crus II, and the precuneus with increased age. Higher 17β-estradiol levels were linked to greater connectivity in Crus I and Crus II cerebellar subregions. Analyzing all participants together, testosterone was associated with both higher and lower connectivity in Lobule I-IV and Crus I, respectively, while higher progesterone levels were linked to lower connectivity in females. Structural differences were observed, with EMA males having larger volumes compared to LMA and OA groups, particularly in the right I-IV, right Crus I, right V, and right VI. EMA females showed higher volumes in the right lobules V and VI. These results highlight the significant role of sex hormones in modulating cerebellar connectivity and structure across adulthood, emphasizing the need to consider sex and hormonal status in neuroimaging studies to better understand age-related cognitive decline and neurological disorders.
Collapse
Affiliation(s)
- Thamires N C Magalhães
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tracey H Hicks
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - T Bryan Jackson
- Vanderbilt Memory & Alzheimer's Center, Nashville, Tennessee, United States of America
| | - Hannah K Ballard
- Department of Psychological Sciences, William Marsh Rice University, Houston, Texas, United States of America
| | - Ivan A Herrejon
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Psychological Sciences, William Marsh Rice University, Houston, Texas, United States of America
| |
Collapse
|
2
|
Magalhães TNC, Maldonado T, Jackson TB, Hicks TH, Herrejon IA, Rezende TJR, Symm AC, Bernard JA. Non-invasive neuromodulation of cerebello-hippocampal volume-behavior relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587400. [PMID: 38617367 PMCID: PMC11014496 DOI: 10.1101/2024.03.29.587400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The study here explores the link between transcranial direct current stimulation (tDCS) and brain-behavior relationships. We propose that tDCS may indirectly influence the complex relationships between brain volume and behavior. We focused on the dynamics between the hippocampus (HPC) and cerebellum (CB) in cognitive processes, a relationship with significant implications for understanding memory and motor skills. Seventy-four young adults (mean age: 22±0.42 years, mean education: 14.7±0.25 years) were randomly assigned to receive either anodal, cathodal, or sham stimulation. Following stimulation, participants completed computerized tasks assessing working memory and sequence learning in a magnetic resonance imaging (MRI) environment. We investigated the statistical interaction between CB and HPC volumes. Our findings showed that individuals with larger cerebellar volumes had shorter reaction times (RT) on a high-load working memory task in the sham stimulation group. In contrast, the anodal stimulation group exhibited faster RTs during the low-load working memory condition. These RT differences were associated with the cortical volumetric interaction between CB-HPC. Literature suggests that anodal stimulation down-regulates the CB and here, those with larger volumes perform more quickly, suggesting the potential need for additional cognitive resources to compensate for cerebellar downregulation. This new insight suggests that tDCS can aid in revealing structure-function relationships, due to greater performance variability, especially in young adults. It may also reveal new targets of interest in the study of aging or in diseases where there is also greater behavioral variability.
Collapse
Affiliation(s)
- Thamires N. C. Magalhães
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, United States of America
| | - T. Bryan Jackson
- Vanderbilt Memory & Alzheimer’s Center, Nashville, Tennessee, United States of America
| | - Tracey H. Hicks
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ivan A. Herrejon
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Thiago J. R. Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Abigail C. Symm
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
4
|
Nielson KA, Venneri A, Murakami S. Editorial: Insights in neurocognitive aging and behavior: 2022. Front Aging Neurosci 2024; 16:1361839. [PMID: 38292340 PMCID: PMC10825009 DOI: 10.3389/fnagi.2024.1361839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Kristy A. Nielson
- Director, Aging, Imaging, and Memory (AIM) Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Annalena Venneri
- Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, London, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Shin Murakami
- Department of Foundational Biomedical Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA, United States
| |
Collapse
|
5
|
Filip P, Kokošová V, Valenta Z, Baláž M, Mangia S, Michaeli S, Vojtíšek L. Utility of quantitative MRI metrics in brain ageing research. Front Aging Neurosci 2023; 15:1099499. [PMID: 36967815 PMCID: PMC10034010 DOI: 10.3389/fnagi.2023.1099499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
The advent of new, advanced quantitative MRI metrics allows for in vivo evaluation of multiple biological processes highly relevant for ageing. The presented study combines several MRI parameters hypothesised to detect distinct biological characteristics as myelin density, cellularity, cellular membrane integrity and iron concentration. 116 healthy volunteers, continuously distributed over the whole adult age span, underwent a multi-modal MRI protocol acquisition. Scatterplots of individual MRI metrics revealed that certain MRI protocols offer much higher sensitivity to early adulthood changes while plateauing in higher age (e.g., global functional connectivity in cerebral cortex or orientation dispersion index in white matter), while other MRI metrics provided reverse ability—stable levels in young adulthood with sharp changes with rising age (e.g., T1ρ and T2ρ). Nonetheless, despite the previously published validations of specificity towards microstructural biology based on cytoarchitectonic maps in healthy population or alterations in certain pathologies, several metrics previously hypothesised to be selective to common measures failed to show similar scatterplot distributions, pointing to further confounding factors directly related to age. Furthermore, other metrics, previously shown to detect different biological characteristics, exhibited substantial intercorrelations, be it due to the nature of the MRI protocol itself or co-dependence of relevant biological microstructural processes. All in all, the presented study provides a unique basis for the design and choice of relevant MRI parameters depending on the age group of interest. Furthermore, it calls for caution in simplistic biological inferences in ageing based on one simple MRI metric, even though previously validated under other conditions. Complex multi-modal approaches combining several metrics to extract the shared subcomponent will be necessary to achieve the desired goal of histological MRI.
Collapse
Affiliation(s)
- Pavel Filip
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Pavel Filip,
| | - Viktória Kokošová
- Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne, Masaryk University, Brno, Czechia
| | - Zdeněk Valenta
- Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne, Masaryk University, Brno, Czechia
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Lubomír Vojtíšek
- Neuroscience Centre, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Maldonado T, Jackson TB, Bernard JA. Anodal cerebellar stimulation increases cortical activation: Evidence for cerebellar scaffolding of cortical processing. Hum Brain Mapp 2023; 44:1666-1682. [PMID: 36468490 PMCID: PMC9921230 DOI: 10.1002/hbm.26166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
While the cerebellum contributes to nonmotor task performance, the specific contributions of the structure remain unknown. One possibility is that the cerebellum allows for the offloading of cortical processing, providing support during task performance, using internal models. Here we used transcranial direct current stimulation to modulate cerebellar function and investigate the impact on cortical activation patterns. Participants (n = 74; 22.03 ± 3.44 years) received either cathodal, anodal, or sham stimulation over the right cerebellum before a functional magnetic resonance imaging scan during which they completed a sequence learning and a working memory task. We predicted that cathodal stimulation would improve, and anodal stimulation would hinder task performance and cortical activation. Behaviorally, anodal stimulation negatively impacted behavior during late-phase sequence learning. Functionally, we found that anodal cerebellar stimulation resulted in increased bilateral cortical activation, particularly in parietal and frontal regions known to be involved in cognitive processing. This suggests that if the cerebellum is not functioning optimally, there is a greater need for cortical resources.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, Indiana, USA.,Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Trevor Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Stalter J, Yogeswaran V, Vogel W, Sörös P, Mathys C, Witt K. The impact of aging on morphometric changes in the cerebellum: A voxel-based morphometry study. Front Aging Neurosci 2023; 15:1078448. [PMID: 36743442 PMCID: PMC9895411 DOI: 10.3389/fnagi.2023.1078448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Introduction Aging influences the morphology of the central nervous system. While several previous studies focused on morphometric changes of the supratentorial parts, investigations on age-related cerebellar changes are rare. The literature concerning the morphological changes in the cerebellum is heterogenous depending (i) on the methods used (cerebellar analysis in the context of a whole brain analysis or specific methods for a cerebellar analysis), (ii) the life span that was investigated, and (iii) the analytic approach (i.e., using linear or non-linear methods). Methods We fill this research gap by investigating age-dependent cerebellar changes in the aging process occurring before the age of 70 in healthy participants, using non-linear methods and the spatially unbiased infratentorial template (SUIT) toolbox which is specifically developed to examine the cerebellum. Furthermore, to derive an overview of the possible behavioral correlates, we relate our findings to functional maps of the cerebellum. Twenty-four older participants (mean age 64.42 years, SD ± 4.8) and 25 younger participants (mean age 24.6 years, SD ± 2.14) were scanned using a 3 T-MRI, and the resulting data were processed using a SUIT. Results Gray matter (GM) volume loss was found in older participants in three clusters in the right cerebellar region, namely crus I/II and lobule VI related to the frontoparietal network, with crus I being functionally related to the default-mode network and lobule VI extending into vermis VIIa related to the ventral-attention-network. Discussion Our results underline an age-related decline in GM volume in the right cerebellar regions that are functionally predominantly related to non-motor networks and cognitive tasks regions of the cerebellum before the age of 70.
Collapse
Affiliation(s)
- Johannes Stalter
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Vinuya Yogeswaran
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Wolfgang Vogel
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Peter Sörös
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christian Mathys
- Center of Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Institute of Radiology and Neuroradiology, Evangelical Hospital Oldenburg, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Bernard JA. Don't forget the little brain: A framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev 2022; 137:104639. [PMID: 35346747 PMCID: PMC9119942 DOI: 10.1016/j.neubiorev.2022.104639] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
With the rapidly growing population of older adults, an improved understanding of brain and cognitive aging is critical, given the impacts on health, independence, and quality of life. To this point, we have a well-developed literature on the cortical contributions to cognition in advanced age. However, while this work has been foundational for our understanding of brain and behavior in older adults, subcortical contributions, particularly those from the cerebellum, have not been integrated into these models and frameworks. Incorporating the cerebellum into models of cognitive aging is an important step for moving the field forward. There has also been recent interest in this structure in Alzheimer's dementia, indicating that such work may be beneficial to our understanding of neurodegenerative disease. Here, I provide an updated overview of the cerebellum in advanced age and propose that it serves as a critical source of scaffolding or reserve for cortical function. Age-related impacts on cerebellar function further impact cortical processing, perhaps resulting in many of the activation patterns commonly seen in aging.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychological and Brain Sciences, USA; Texas A&M Institute for Neuroscience, Texas A&M University, USA.
| |
Collapse
|
9
|
The Polarity-Specific Nature of Single-Session High-definition Transcranial Direct Current Stimulation to the Cerebellum and Prefrontal Cortex on Motor and Non-motor Task Performance. THE CEREBELLUM 2021; 20:569-583. [PMID: 33544371 DOI: 10.1007/s12311-021-01235-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
The cerebellum has an increasingly recognized role in higher order cognition. Advancements in noninvasive neuromodulation techniques allow one to focally create functional alterations in the cerebellum to investigate its role in cognitive functions. To this point, work in this area has been mixed, in part due to varying methodologies for stimulation, and it is unclear whether or not transcranial direct current stimulation (tDCS) effects on the cerebellum are task or load dependent. Here, we employed a between-subjects design using a high definition tDCS system to apply anodal, cathodal, or sham stimulation to the cerebellum or prefrontal cortex (PFC) to examine the role the cerebellum plays in verbal working memory, inhibition, motor learning, and balance performance, and how this interaction might interact with the cortex (i.e., PFC). We predicted performance decrements following anodal stimulation and performance increases following cathodal stimulation, compared with sham. Broadly, our work provides evidence for cerebellar contributions to cognitive processing, particularly in verbal working memory and sequence learning. Additionally, we found the effect of stimulation might be load specific, particularly when applied to the cerebellum. Critically, anodal stimulation negatively impacted performance during effortful processing, but was helpful during less effortful processing. Cathodal stimulation hindered task performance, regardless of simulation region. The current results suggest an effect of stimulation on cognition, perhaps suggesting that the cerebellum is more critical when processing is less effortful but becomes less involved under higher load when processing is more prefrontally dependent.
Collapse
|
10
|
Bernard JA, Nguyen AD, Hausman HK, Maldonado T, Ballard HK, Jackson TB, Eakin SM, Lokshina Y, Goen JRM. Shaky scaffolding: Age differences in cerebellar activation revealed through activation likelihood estimation meta-analysis. Hum Brain Mapp 2020; 41:5255-5281. [PMID: 32936989 PMCID: PMC7670650 DOI: 10.1002/hbm.25191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/27/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Cognitive neuroscience research has provided foundational insights into aging, but has focused primarily on the cerebral cortex. However, the cerebellum is subject to the effects of aging. Given the importance of this structure in the performance of motor and cognitive tasks, cerebellar differences stand to provide critical insights into age differences in behavior. However, our understanding of cerebellar functional activation in aging is limited. Thus, we completed a meta‐analysis of neuroimaging studies across task domains. Unlike in the cortex where an increase in bilateral activation is seen during cognitive task performance with advanced age, there is less overlap in cerebellar activation across tasks in older adults (OAs) relative to young. Conversely, we see an increase in activation overlap in OAs during motor tasks. We propose that this is due to inputs for comparator processing in the context of control theory (cortical and spinal) that may be differentially impacted in aging. These findings advance our understanding of the aging mind and brain.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - An D Nguyen
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hanna K Hausman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Ted Maldonado
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Sydney M Eakin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Yana Lokshina
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - James R M Goen
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Functional Changes of Mentalizing Network in SCA2 Patients: Novel Insights into Understanding the Social Cerebellum. THE CEREBELLUM 2020; 19:235-242. [PMID: 31925668 DOI: 10.1007/s12311-019-01081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, increasing evidence of the cerebellar role in social cognition has emerged. The cerebellum has been shown to modulate cortical activity of social brain regions serving as a regulator of function-specific mentalizing and mirroring processes. In particular, a mentalizing area in the posterior cerebellum, specifically Crus II, is preferentially recruited for more complex and abstract forms of social processing, together with mentalizing cerebral areas including the dorsal medial prefrontal cortex (dmPFC), the temporo-parietal junction (TPJ), and the precuneus. In the present study, the network-based statistics approach was used to assess functional connectivity (FC) differences within this mentalizing cerebello-cerebral network associated with a specific cerebellar damage. To this aim, patients affected by spinocerebellar ataxia type 2 (SCA2), a neurodegenerative disease specifically affecting regions of the cerebellar cortex, and age-matched healthy subjects have been enrolled. The dmPFC, left and right TPJ, the precuneus, and the cerebellar Crus II were used as regions of interest to construct the mentalizing network to be analyzed and evaluate pairwise functional relations between them. When compared with controls, SCA2 patients showed altered internodal connectivity between dmPFC, left (L-) and right (R-) TPJ, and right posterior cerebellar Crus II.The present results indicate that FC changes affect a function-specific mentalizing network in patients affected by cerebellar damage. In particular, they allow to better clarify functional alteration mechanisms driven by the cerebellar damage associated with SCA2 suggesting that selective cortico-cerebellar functional disconnections may underlie patients' social impairment in domain-specific complex and abstract forms of social functioning.
Collapse
|
12
|
Marková L, Bareš M, Lungu OV, Filip P. Quantitative but Not Qualitative Performance Changes in Predictive Motor Timing as a Result of Overtraining. THE CEREBELLUM 2020; 19:201-207. [PMID: 31898279 DOI: 10.1007/s12311-019-01100-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The possibilities of substantial long-term improvement of predictive timing might be sometimes seen as limited, with scanty information of neural substrates underlying the potential learning process. To address this issue, we have investigated the performance of 21 baseball professionals and 21 matched controls in a predictive motor timing task previously shown to engage the cerebellum. Baseball players, hypothesized as a model of overtraining of the prediction of future state of the surroundings, showed significantly higher quantitative performance than nonathletic controls, with a substantial part of the baseball players reaching levels far beyond the range observed in common population. Furthermore, the qualitative performance profile of baseball players under various conditions as target speed and acceleration modes did not differ from the profile of healthy controls. Our results suggest that regular exigent training has the potential to vastly improve predictive motor timing. Moreover, the quantitative but not qualitative difference in the performance profile allows us to hypothesize that the selective honing of the same cerebellar processes and networks as in non-trained individuals is the substrate for the quantitative performance improvement, without substantial engagement of further neural nodes.
Collapse
Affiliation(s)
- Lenka Marková
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne and Masaryk University, Brno, Czech Republic.,Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ovidiu V Lungu
- Department of Psychiatry, Université de Montréal, Montréal, Canada.,Functional Neuroimaging Unit, Research Center of the Geriatric Institute, Université de Montréal, Montréal, Canada
| | - Pavel Filip
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne and Masaryk University, Brno, Czech Republic. .,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, USA.
| |
Collapse
|
13
|
Jackson TB, Maldonado T, Eakin SM, Orr JM, Bernard JA. Cerebellar and prefrontal-cortical engagement during higher-order rule learning in older adulthood. Neuropsychologia 2020; 148:107620. [PMID: 32920030 DOI: 10.1016/j.neuropsychologia.2020.107620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Abstract
To date most aging research has focused on cortical systems and networks, ignoring the cerebellum which has been implicated in both cognitive and motor function. Critically, older adults (OA) show marked differences in cerebellar volume and functional networks, suggesting it may play a key role in the behavioral differences observed in advanced age. OA may be less able to recruit cerebellar resources due to network and structural differences. Here, 26 young adults (YA) and 25 OA performed a second-order learning task, known to activate the cerebellum in the fMRI environment. Behavioral results indicated that YA performed significantly better and learned more quickly compared to OA. Functional imaging detailed robust parietal and cerebellar activity during learning (compared to control) blocks within each group. OA showed increased activity (relative to YA) in the left inferior parietal lobe in response to instruction cues during learning (compared to control); whereas, YA showed increased activity (relative to OA) in the left anterior cingulate to feedback cues during learning, potentially explaining age-related performance differences. Visual interpretation of effect size maps showed more bilateral posterior cerebellar activation in OA compared to YA during learning blocks, but early learning showed widespread cerebellar activation in YA compared to OA. There were qualitatively large age-related differences in cerebellar recruitment in terms of effect sizes, yet no statistical difference. These findings serve to further elucidate age-related differences and similarities in cerebellar and cortical brain function and implicate the cerebellum and its networks as regions of interest in aging research.
Collapse
Affiliation(s)
- T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA.
| | - Ted Maldonado
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Sydney M Eakin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Joseph M Orr
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, USA
| |
Collapse
|
14
|
Affective and cognitive theory of mind in patients with cervical dystonia with and without tremor. J Neural Transm (Vienna) 2020; 128:199-206. [PMID: 32770275 DOI: 10.1007/s00702-020-02237-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Theory of mind (ToM) refers to an individual's ability to attribute mental states to predict and explain another person's behavior. It has been shown that patients with cervical dystonia (CD) present impaired ToM ability supporting the idea that CD is a network disorder. An emerging hypothesis is that different phenotypes of CD reflect distinct key nodes in the malfunctioning cerebral network. The aim of the present study was to investigate whether the presence of tremor as additional phenotypic feature of CD influences the ability to attribute a cognitive or emotional state to another person. We enrolled 35 patients with CD, 21 with tremor (CD-T) and 14 without tremor (CD-NT) and 47 age-matched healthy subjects (HS). The Emotion Attribution Task (EAT) was adopted to assess the affective ToM ability while the Advanced Test (AT) was used to investigate the cognitive ToM ability. Results showed that CD patients' performance was worse than HS in recognizing the emotional feelings expressed in the EAT situations, with no difference between CD-T and CD-NT. Regarding cognitive ToM, both CD-T and CD-NT performed worse than HS in the AT task. However, it also emerged that CD-T were more impaired in AT task than CD-NT. Our results indicate that both affective and cognitive aspects of ToM are impaired in CD and that cognitive ToM is more impaired in patients presenting tremor respect to those without. These findings support the hypothesis that the cerebral network responsible of motor and non-motor impairments is more widespread in CD-T than CD-NT.
Collapse
|
15
|
Maes C, Swinnen SP, Albouy G, Sunaert S, Gooijers J, Chalavi S, Pauwels L. The role of the PMd in task complexity: functional connectivity is modulated by motor learning and age. Neurobiol Aging 2020; 92:12-27. [PMID: 32339856 DOI: 10.1016/j.neurobiolaging.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
The dorsal premotor cortex (PMd) plays a key role in the control and learning of motor tasks, especially when task complexity is high. This study sought to investigate the effect of task complexity on PMd-seeded functional connectivity in the context of aging using psychophysiological interaction analyses. Young and older participants were enrolled in a 3-day training protocol whereby task-related functional magnetic resonance imaging data were acquired. During training, movement was either internally generated or externally generated in the absence or presence of online visual feedback, respectively. Behavioral results indicated that older adults tended to have more difficulties with the complex task variants as compared with young adults. On a neural level, older adults demonstrated difficulties in flexibly adjusting their neural resources dependent on the feedback provided. Furthermore, PMd-seeded connectivity was related to a behavioral task complexity index in both age groups, albeit mediated by age. Together, these results highlight the importance of PMd in adaptability to task complexity and its age-related effects.
Collapse
Affiliation(s)
- Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Geneviève Albouy
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven & University Hospital Leuven, Translational MRI & Radiology, Department of Imaging and Pathology, Group Biomedical Sciences, Leuven, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sima Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|