1
|
Li H, Li Y, Wang T, Li S, Liu H, Ning S, Shen W, Zhao Z, Wu H. Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain. Neurosci Bull 2024:10.1007/s12264-024-01296-x. [PMID: 39277552 DOI: 10.1007/s12264-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 09/17/2024] Open
Abstract
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ting Wang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shuyi Ning
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Inutsuka A, Hattori A, Yoshida M, Takayanagi Y, Onaka T. Cerebellar damage with inflammation upregulates oxytocin receptor expression in Bergmann Glia. Mol Brain 2024; 17:41. [PMID: 38943193 PMCID: PMC11214225 DOI: 10.1186/s13041-024-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
The cerebellum plays an important role in cognitive and social functioning. Childhood damage in the cerebellum increases the risk of autism spectrum disorder. Cerebellar inflammation induces social avoidance in mice. Oxytocin regulates social relationship and expression pattern of the oxytocin receptor in the brain is related to social behaviors. However, the expression patterns of the oxytocin receptor in the cerebellum remain controversial. Here, we report that the expression patterns of the oxytocin receptor in the cerebellum are highly variable among knock-in transgenic lines. We used Oxtr-Cre knock-in mice combined with a fluorescent reporter line and found that oxytocin receptor expression in Bergmann glia was more variable than that in Purkinje cells. We found that physical damage with inflammation induced the selective upregulation of the oxytocin receptor in Bergmann glia. Our findings indicate high variability in oxytocin receptor expression in the cerebellum and suggest that the oxytocin receptor can affect neural processing in pathological conditions, such as inflammation.
Collapse
Affiliation(s)
- Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, Shimotsuke, 323-0498, Japan.
| | - Aisa Hattori
- Department of Physiology, Jichi Medical University, Shimotsuke, 323-0498, Japan
| | - Masahide Yoshida
- Department of Physiology, Jichi Medical University, Shimotsuke, 323-0498, Japan
| | - Yuki Takayanagi
- Department of Physiology, Jichi Medical University, Shimotsuke, 323-0498, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, Shimotsuke, 323-0498, Japan.
| |
Collapse
|
3
|
Li ZH, Li B, Zhang XY, Zhu JN. Neuropeptides and Their Roles in the Cerebellum. Int J Mol Sci 2024; 25:2332. [PMID: 38397008 PMCID: PMC10889816 DOI: 10.3390/ijms25042332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Although more than 30 different types of neuropeptides have been identified in various cell types and circuits of the cerebellum, their unique functions in the cerebellum remain poorly understood. Given the nature of their diffuse distribution, peptidergic systems are generally assumed to exert a modulatory effect on the cerebellum via adaptively tuning neuronal excitability, synaptic transmission, and synaptic plasticity within cerebellar circuits. Moreover, cerebellar neuropeptides have also been revealed to be involved in the neurogenetic and developmental regulation of the developing cerebellum, including survival, migration, differentiation, and maturation of the Purkinje cells and granule cells in the cerebellar cortex. On the other hand, cerebellar neuropeptides hold a critical position in the pathophysiology and pathogenesis of many cerebellar-related motor and psychiatric disorders, such as cerebellar ataxias and autism. Over the past two decades, a growing body of evidence has indicated neuropeptides as potential therapeutic targets to ameliorate these diseases effectively. Therefore, this review focuses on eight cerebellar neuropeptides that have attracted more attention in recent years and have significant potential for clinical application associated with neurodegenerative and/or neuropsychiatric disorders, including brain-derived neurotrophic factor, corticotropin-releasing factor, angiotensin II, neuropeptide Y, orexin, thyrotropin-releasing hormone, oxytocin, and secretin, which may provide novel insights and a framework for our understanding of cerebellar-related disorders and have implications for novel treatments targeting neuropeptide systems.
Collapse
Affiliation(s)
- Zi-Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.-H.L.); (J.-N.Z.)
| | - Bin Li
- Women and Children’s Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.-H.L.); (J.-N.Z.)
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.-H.L.); (J.-N.Z.)
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Xie ST, Fan WC, Zhao XS, Ma XY, Li ZL, Zhao YR, Yang F, Shi Y, Rong H, Cui ZS, Chen JY, Li HZ, Yan C, Zhang Q, Wang JJ, Zhang XY, Gu XP, Ma ZL, Zhu JN. Proinflammatory activation of microglia in the cerebellum hyperexcites Purkinje cells to trigger ataxia. Pharmacol Res 2023; 191:106773. [PMID: 37068531 DOI: 10.1016/j.phrs.2023.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking. Here, by employing chemogenetic approaches to manipulate cerebellar microglia selectively and directly, we found that specific chemogenetic activation of microglia in the cerebellar vermis directly leads to ataxia symptoms in wild-type mice and aggravated ataxic motor deficits in 3-acetylpyridine (3-AP) mice, a classic mouse model of cerebellar ataxia. Mechanistically, cerebellar microglial proinflammatory activation induced by either chemogenetic M3D(Gq) stimulation or 3-AP modeling hyperexcites Purkinje cells (PCs), which consequently triggers ataxia. Blockade of microglia-derived TNF-α, one of the most important proinflammatory cytokines, attenuates the hyperactivity of PCs driven by microglia. Moreover, chemogenetic inhibition of cerebellar microglial activation or suppression of cerebellar microglial activation by PLX3397 and minocycline reduces the production of proinflammatory cytokines, including TNF-α, to effectively restore the overactivation of PCs and alleviate motor deficits in 3-AP mice. These results suggest that cerebellar microglial activation may aggravate the neuroinflammatory response and subsequently induce dysfunction of PCs, which in turn triggers ataxic motor deficits. Our findings thus reveal a causal relationship between proinflammatory activation of cerebellar microglia and ataxic motor symptoms, which may offer novel evidence for therapeutic intervention for cerebellar ataxias by targeting microglia and microglia-derived inflammatory mediators.
Collapse
Affiliation(s)
- Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen-Chu Fan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xian-Sen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ze-Lin Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Ran Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hui Rong
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi-San Cui
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun-Yi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Zheng-Liang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|