1
|
Zhong L, Yang J, Syed JN, Zhang Y, Tian Y, Fu X. Alpha-Glucosidase Inhibitors in Aging and Aging-Related Diseases: Clinical Applications and Relevant Mechanisms. Aging Dis 2025:AD.2024.1477. [PMID: 39751859 DOI: 10.14336/ad.2024.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Aging is a complex and universal process marked by gradual functional declines at the cellular and tissue levels, often leading to a range of aging-related diseases such as diabetes, cardiovascular diseases, and cancer. Delaying the aging process can help prevent, slow down, and alleviate the severity of these various conditions, enhancing overall health and well-being. Alpha-glucosidase inhibitors (AGIs) are a class of widely used antidiabetic drugs that inhibit alpha-glucosidase in the small intestinal mucosa, delaying carbohydrate absorption and reducing postprandial hyperglycemia. Beyond their roles in diabetes treatment, AGIs have shown potential in extending lifespan and effectively treating aging-related diseases by modulating oxidative stress, gut microbiota, inflammatory responses, and nutrient-sensing pathways. This review summarizes recent advancements in the application of AGIs for preventing and treating aging and aging-related diseases, with a focus on their mechanisms and roles in these processes.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jielin Yang
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5S 1A1, Canada
| | - Jibran Nehal Syed
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5S 1A1, Canada
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
2
|
Wang H, Huang X, Pan Y, Zhang G, Tang S, Shao H, Jiao W. Synthesis and Biological Evaluation of New Dihydrofuro[3,2- b]piperidine Derivatives as Potent α-Glucosidase Inhibitors. Molecules 2024; 29:1179. [PMID: 38474691 DOI: 10.3390/molecules29051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Inhibition of glycoside hydrolases has widespread application in the treatment of diabetes. Based on our previous findings, a series of dihydrofuro[3,2-b]piperidine derivatives was designed and synthesized from D- and L-arabinose. Compounds 32 (IC50 = 0.07 μM) and 28 (IC50 = 0.5 μM) showed significantly stronger inhibitory potency against α-glucosidase than positive control acarbose. The study of the structure-activity relationship of these compounds provides a new clue for the development of new α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Haibo Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Hongyuan Pharmaceutical Co., Ltd., Linhai 317016, China
| | - Xiaojiang Huang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Senling Tang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
3
|
Ramya V, Shyam KP, Kowsalya E, Balavigneswaran CK, Kadalmani B. Dual Roles of Coconut Oil and Its Major Component Lauric Acid on Redox Nexus: Focus on Cytoprotection and Cancer Cell Death. Front Neurosci 2022; 16:833630. [PMID: 35360165 PMCID: PMC8963114 DOI: 10.3389/fnins.2022.833630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
It has been reported that coconut oil supplementation can reduce neuroinflammation. However, coconut oils are available as virgin coconut oil (VCO), crude coconut oil (ECO), and refined coconut oil (RCO). The impact of coconut oil extraction process (and its major fatty acid component lauric acid) at cellular antioxidant level, redox homeostasis and inflammation in neural cells is hitherto unexplained. Herein, we have shown the antioxidant levels and cellular effect of coconut oil extracted by various processes in human neuroblastoma cells (SH-SY5Y) cultured in vitro. Results indicate VCO and ECO treated cells displayed better mitochondrial health when compared to RCO. Similar trend was observed for the release of reactive oxygen species (ROS), key oxidative stress response genes (GCLC, HO-1, and Nqo1) and inflammatory genes (IL6, TNFα, and iNOS) in SH-SY5Y cells. Our results signified that both VCO and ECO offer better neural health primarily by maintaining the cellular redox balance. Further, RCO prepared by solvent extraction and chemical refining process lacks appreciable beneficial effect. Then, we extended our study to find out the reasons behind maintaining the cellular redox balance in neuroblastoma cells by VCO and ECO. Our GC-MS results showed that lauric acid (C14:0) (LA) content was the major difference in the fatty acid composition extracted by various processes. Therefore, we evaluated the efficacy of LA in SH-SY5Y cells. The LA showed dose-dependent effect. At IC50 concentration (11.8 μM), LA down regulated the oxidative stress response genes and inflammatory genes. The results clearly indicate that the LA inhibited the neuroinflammation and provided an efficient cellular antioxidant activity, which protects the cells. The efficiency was also evaluated in normal cell line such as fibroblasts (L929) to cross-validate that the results were not false positive. Different concentration of LA on L929 cells showed high compatibility. From our observation, we conclude that VCO and ECO offers better cellular protection owing to their powerful antioxidant system. Therefore, we advocate the inclusion of either VCO and/or ECO in the diet for a healthy lifestyle.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | | - Eshwaran Kowsalya
- Research and Development Division, V.V.D and Sons Private Limited, Thoothukudi, India
| | - Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Balamuthu Kadalmani
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
4
|
Nowrouzi-Sohrabi P, Tabrizi R, Rezaei S, Jafari F, Hessami K, Abedi M, Jalali M, Keshavarzi P, Shahabi S, Kolahi AA, Carson-Chahhoud K, Sahebkar A, Safiri S. The effect of voglibose on metabolic profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of clinical trials. Pharmacol Res 2020; 159:104988. [PMID: 32504833 DOI: 10.1016/j.phrs.2020.104988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The effect of voglibose on metabolic homeostasis is not well characterized. Therefore, we conducted a systematic review and meta-analysis of clinical trials assessing the effect of voglibose on metabolic profile in patients with type 2 diabetes mellitus (T2DM). METHODS Systematic searches were conducted in PubMed, Scopus, Embase, Google Scholar, Web of Science and Cochrane Library to identify clinical trials assessing the effects of voglibose supplementation on cardio-metabolic profile from incept up to 29 July 2019. Data was pooled using fixed- or random-effect models and weighted mean difference (WMD) as the effect size. RESULTS Eight clinical trials from 1094 reports, were eligible for inclusion. Pooled findings identified significant reductions in hemoglobin A1c (HbA1c) (WMD= -0.27; 95 %CI -0.49 to -0.05; P = 0.01; I2 = 64.8 %) and an increase in LDL-cholesterol levels (WMD=5.97 mg/dl, 95 % CI 0.88, 11.06, P = 0.02; I2 = 0.0 %). However, no evidence of effect for voglibose intake on T2DM patients was observed for: fasting blood sugar (FBS) (WMD -7.43 mg/dl; 95 %CI -16.56 to 1.71; P = 0.110; I2 = 69.3 %), serum insulin (WMD= -0.15 μU/mL; 95 %CI -0.89 to 0.60; P = 0.70; I2 = 0.0 %), total-cholesterol (WMD=2.82 mg/dl, 95 %CI -2.36 to 8.01, P = 0.70; I2 = 49.7 %), triglycerides (WMD= -7.07 mg/dl, 95 %CI -21.76 to 7.62, P = 0.34; I2 = 0.0 %), HDL-cholesterol levels (WMD= -2.10 mg/dl, 95 %CI -4.48 to 0.27, P = 0.08; I2 = 0.0 %,), body mass index (BMI) (WMD=0.09 kg/m2, 95 %CI -0.70 to 0.87; P = 0.87; I2 = 0.0 %), body weight (WMD= -0.42 kg, 95 %CI -0.84 to 0.00; P = 0.05; I2 = 0.0 %), and adiponectin levels (WMD = 0.32 μg/mL, 95 %CI -0.74 to 1.38; P = 0.55; I2 = 0.0 %). CONCLUSIONS The current meta-analysis identified a decrease in HbA1c and an increase in LDL-cholesterol with administration of voglibose. However, no significant effect was observed on FBS, insulin, bodyweight, BMI, adiponectin, triglycerides, total- and HDL-cholesterol levels.
Collapse
Affiliation(s)
- Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahla Rezaei
- School of Nutrition and Food Sciences, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jafari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Hessami
- Maternal-Fetal Medicine Research Center, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jalali
- Nutrition Research Center, Student Research Committee, Shiraz University of Medical Sciences, Iran
| | - Pedram Keshavarzi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Shahabi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Australia
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeid Safiri
- Social Determinants of Health Research Center, Department of Community Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother 2019; 20:2229-2235. [PMID: 31593486 DOI: 10.1080/14656566.2019.1672660] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Alpha-glucosidase inhibitors (AGIs) - oral antihyperglycemic drugs, inhibit upper gastrointestinal enzymes that break down complex carbohydrates into glucose. As a result, the absorption of glucose is delayed, postprandial glucose reduced, and glycemic control improved.Areas covered: In this review, the authors describe the current recommendations on the use of the three major approved AGIs (acarbose, miglitol, voglibose). Efficacy and safety parameters together with ethnic considerations have been highlighted throughout the manuscript. The article also discusses potential diabetes prevention and cardiovascular effects of these medications.Expert opinion: The overall safety and efficacy of this class of drug appears to be high: AGIs do not increase the risk of hypoglycemia, do not cause weight gain; they also significantly improve postprandial hyperglycemia, have been associated with the reduction in risk factors for cardiovascular disease and may also delay the progression of prediabetes to T2DM. In general, we continue to believe that acarbose, miglitol, and voglibose should be used as third-line add on treatment options to other anti-hyperglycemic agents. However, this class can have earlier consideration in elderly and/or when metformin is contraindicated.
Collapse
Affiliation(s)
- Maka S Hedrington
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother 2015; 16:1959-81. [PMID: 26255950 DOI: 10.1517/14656566.2015.1070827] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Postprandial hyperglycemia (PPHG) contributes to micro- and macro-vascular complications more than fasting hyperglycemia in patients with type 2 diabetes mellitus. Due to the traditional carbohydrate-rich diet, Asians, particularly Indians and Chinese need agents to control the higher risk of uncontrolled PPHG. Targeting PPHG with α-glucosidase inhibitors (AGIs), either alone or in combination with other oral hypoglycemic agents and insulin, provide overall glycemic control with transient mild gastrointestinal disorders. Treatment with AGIs, especially acarbose, has also shown to provide beneficial effects on lipid levels, blood pressure, coagulation factors, carotid intima-media thickness and endothelial dysfunction. New insights of acarbose therapy obtained like increased activity of gut hormones and improved gut microbiota may explain the benefits on weight, whereas increased production of H2 may explains its cardiovascular benefits to some extent. AREAS COVERED A systematic search strategy was developed to identify randomized controlled trials in MEDLINE, PubMed, EMBASE and ongoing trials databases. EXPERT OPINION AGIs as a class and acarbose in particular, are most useful in combatting PPHG and glucose variability across the spectrum of diabetes therapy, particularly in Asian patients. Together with their effects on incretin hormones and gut-microbiota AGIs can be considered beyond glycemic control as 'cardio-protective agents.'
Collapse
|
7
|
Hanefeld M. Acarbose revisited for efficacy, safety and cardiovascular benefits: a key role for controlling glycemic variability. Expert Rev Endocrinol Metab 2012; 7:395-405. [PMID: 30754166 DOI: 10.1586/eem.12.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a growing body of evidence to illustrate the effect of postprandial hyperglycemia (PPHG) in cardiovascular disease development and as a key component of diurnal hyperglycemia. Agents such as acarbose, which has been shown to reduce 24-h glycemia and glycated hemoglobin (mainly via its effects on PPHG), may have the potential to reduce the risk of adverse cardiovascular outcomes as indicated in secondary analyses of the STOP-NIDDM trial. Although the results of the NAVIGATOR trial showed no effect of PPHG reduction on cardiovascular outcomes, acarbose has a different mode of action to nateglinide. This could lead to marked cardiovascular differences, and it is important to fully investigate this. The ongoing ACE trial will determine the effect of acarbose on a composite primary end point of cardiovascular outcomes.
Collapse
Affiliation(s)
- Markolf Hanefeld
- a Center for Clinical Studies, GWT - Technical University Dresden, Fiedlerstrasse 34, 01307 Dresden, Germany.
| |
Collapse
|
8
|
Kumar RV, Sinha VR. A novel synergistic galactomannan-based unit dosage form for sustained release of acarbose. AAPS PharmSciTech 2012; 13:262-75. [PMID: 22234597 DOI: 10.1208/s12249-011-9724-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/04/2011] [Indexed: 12/19/2022] Open
Abstract
In the current study, the potential of a novel combination of a galactomannan with acarbose (100 mg) was evaluated for attaining a desired hypoglycaemic effect over a prolonged period of time. Three major antidiabetic galactomannans viz., fenugreek gum, Boswellia gum, and locust bean gum were selected in order to achieve a synergistic effect in the treatment along with retardation in drug release. In vitro studies indicated that batches containing various proportions of fenugreek gum (AF40-60) were able to control drug release for a longer duration of approximately 10-12 h. In contrast, the matrices prepared using Boswellia and locust bean gum were able to sustain the release for relatively shorter durations. Drug release mainly followed first-order release kinetics owing to the highly soluble nature of the drug. In vivo study depicted a significant reduction (p < 0.001) in the postprandial blood glucose and triglyceride levels in the diabetic rats on treatment with formulation AF40. Thus, the developed system provides a better control of the postprandial glycaemic levels and it also obviates the need of conventional multiple dosing of acarbose. Furthermore, it also reduces the occurrence of side effects like diarrhea and loss of appetite.
Collapse
|