1
|
Kappel RH, Precht H, Christensen TQ, Hess S, Kusk MW. Software Discrepancies in Radionuclide-Derived Left Ventricular Ejection Fraction. J Nucl Med Technol 2025:jnmt.124.268665. [PMID: 39814461 DOI: 10.2967/jnmt.124.268665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025] Open
Abstract
Gated equilibrium radionuclide angiography (ERNA), or multigated acquisition scanning, is a well-established technique to monitor left ventricular ejection fraction (LVEF) in patients treated with potentially cardiotoxic chemotherapy. To determine the results of a true change in LVEF, low inter- and intrareader variability is important. The aim of this study was to investigate inter- and intrareader variability in LVEF measurements using 2 different commercially available software packages with cardiac MR (CMR) as a reference standard. Methods: In 46 ERNA scans, LVEF was measured by 2 experienced nuclear medicine technologists, using the 2 software packages Xeleris and Corridor4DM. All patients had CMR performed within 1.5 h from ERNA. CMR-derived LVEF was measured by a cardiologist using cvi42 software. Eight patients were reanalyzed to investigate intrareader variability. Bland-Altman analysis was used to assess agreement between readers and software. Repeated-measures ANOVA was used to assess interactions between readers and software. Differences in mean LVEF were compared using a t test. The Lin concordance correlation coefficient (CCC) was used to test LVEF agreement between software packages and readers and the reference CMR results. Results: Corridor4DM had a significantly higher mean LVEF than did Xeleris. No significant interreader difference was observed within the same software. ANOVA found that readers did not influence LVEFs. The CCC between software packages was similar for both readers, at 0.409 for reader 1 and 0.418 for reader 2. Both software packages showed a significant LVEF bias compared with CMR (4% for Xeleris vs. 11% for Corridor4DM). For both readers, the CCC for correlation with MRI was higher for Xeleris (0.438/0.572) than for Corridor4DM (0.257/0.244). Conclusion: A high degree of variability was found between the 2 different software packages for the calculation of LVEF. No significant difference in LVEF was found between readers using the same software. Corridor4DM gave higher LVEF estimates than did Xeleris. Our findings suggest that different software programs for assessing LVEF in ERNA examinations are not interchangeable. The utmost caution is recommended if switching between different types of software.
Collapse
Affiliation(s)
- Rune H Kappel
- Faculty of Health Science, University of Southern Denmark, Odense, Denmark;
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Esbjerg, Denmark
- Radiography Education, UCL University College, Odense, Denmark
- Department of Nuclear Medicine, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark
| | - Helle Precht
- Radiography Education, UCL University College, Odense, Denmark
- Department of Radiology, Lillebaelt Hospital-University Hospital of Southern Denmark, Kolding, Denmark
- Health Sciences Research Centre, UCL University College, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Discipline of Medical Imaging and Radiation Therapy, Cork University College, Cork, Ireland
| | - Thomas Q Christensen
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Engineering, Region of Southern Denmark, Esbjerg, Denmark
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; and
| | - Martin W Kusk
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Ha S, Seo SY, Park BS, Han S, Oh JS, Chae SY, Kim JS, Moon DH. Fully Automatic Quantitative Measurement of Equilibrium Radionuclide Angiocardiography Using a Convolutional Neural Network. Clin Nucl Med 2024; 49:727-732. [PMID: 38967505 DOI: 10.1097/rlu.0000000000005275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE The aim of this study was to generate deep learning-based regions of interest (ROIs) from equilibrium radionuclide angiography datasets for left ventricular ejection fraction (LVEF) measurement. PATIENTS AND METHODS Manually drawn ROIs (mROIs) on end-systolic and end-diastolic images were extracted from reports in a Picture Archiving and Communications System. To reduce observer variability, preprocessed ROIs (pROIs) were delineated using a 41% threshold of the maximal pixel counts of the extracted mROIs and were labeled as ground-truth. Background ROIs were automatically created using an algorithm to identify areas with minimum counts within specified probability areas around the end-systolic ROI. A 2-dimensional U-Net convolutional neural network architecture was trained to generate deep learning-based ROIs (dlROIs) from pROIs. The model's performance was evaluated using Lin's concordance correlation coefficient (CCC). Bland-Altman plots were used to assess bias and 95% limits of agreement. RESULTS A total of 41,462 scans (19,309 patients) were included. Strong concordance was found between LVEF measurements from dlROIs and pROIs (CCC = 85.6%; 95% confidence interval, 85.4%-85.9%), and between LVEF measurements from dlROIs and mROIs (CCC = 86.1%; 95% confidence interval, 85.8%-86.3%). In the Bland-Altman analysis, the mean differences and 95% limits of agreement of the LVEF measurements were -0.6% and -6.6% to 5.3%, respectively, for dlROIs and pROIs, and -0.4% and -6.3% to 5.4% for dlROIs and mROIs, respectively. In 37,537 scans (91%), the absolute LVEF difference between dlROIs and mROIs was <5%. CONCLUSIONS Our 2-dimensional U-Net convolutional neural network architecture showed excellent performance in generating LV ROIs from equilibrium radionuclide angiography scans. It may enhance the convenience and reproducibility of LVEF measurements.
Collapse
Affiliation(s)
- Sejin Ha
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Yeon Seo
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Byung Soo Park
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sangwon Han
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jungsu S Oh
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Chae
- Department of Nuclear Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea
| | - Jae Seung Kim
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae Hyuk Moon
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Mikail N, Chequer R, Imperiale A, Meisel A, Bengs S, Portmann A, Gimelli A, Buechel RR, Gebhard C, Rossi A. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring. Eur Heart J Cardiovasc Imaging 2023; 24:1129-1145. [PMID: 37467476 PMCID: PMC10501471 DOI: 10.1093/ehjci/jead168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Renata Chequer
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP, University Diderot, 75018 Paris, France
| | - Alessio Imperiale
- Nuclear Medicine, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, 67093 Strasbourg, France
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67093 Strasbourg, France
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Kantonsspital Glarus, Burgstrasse 99, 8750 Glarus, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione CNR/Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Hospital Inselspital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
4
|
Totzeck M, Aide N, Bauersachs J, Bucerius J, Georgoulias P, Herrmann K, Hyafil F, Kunikowska J, Lubberink M, Nappi C, Rassaf T, Saraste A, Sciagra R, Slart RHJA, Verberne H, Rischpler C. Nuclear medicine in the assessment and prevention of cancer therapy-related cardiotoxicity: prospects and proposal of use by the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging 2023; 50:792-812. [PMID: 36334105 PMCID: PMC9852191 DOI: 10.1007/s00259-022-05991-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Cardiotoxicity may present as (pulmonary) hypertension, acute and chronic coronary syndromes, venous thromboembolism, cardiomyopathies/heart failure, arrhythmia, valvular heart disease, peripheral arterial disease, and myocarditis. Many of these disease entities can be diagnosed by established cardiovascular diagnostic pathways. Nuclear medicine, however, has proven promising in the diagnosis of cardiomyopathies/heart failure, and peri- and myocarditis as well as arterial inflammation. This article first outlines the spectrum of cardiotoxic cancer therapies and the potential side effects. This will be complemented by the definition of cardiotoxicity using non-nuclear cardiovascular imaging (echocardiography, CMR) and biomarkers. Available nuclear imaging techniques are then presented and specific suggestions are made for their application and potential role in the diagnosis of cardiotoxicity.
Collapse
Affiliation(s)
- Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nicolas Aide
- Nuclear Medicine Department, University Hospital, Caen, France
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jan Bucerius
- Department of Nuclear Medicine, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Ken Herrmann
- Clinic for Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabien Hyafil
- Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, Assistance-Publique – Hôpitaux de Paris, University of Paris, Paris, France
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Antti Saraste
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Roberto Sciagra
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Riemer H. J. A. Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, Enschede, The Netherlands
| | - Hein Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christoph Rischpler
- Clinic for Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Kersting D, Settelmeier S, Mavroeidi IA, Herrmann K, Seifert R, Rischpler C. Shining Damaged Hearts: Immunotherapy-Related Cardiotoxicity in the Spotlight of Nuclear Cardiology. Int J Mol Sci 2022; 23:3802. [PMID: 35409161 PMCID: PMC8998973 DOI: 10.3390/ijms23073802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy, cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, identification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy will be discussed in this review article with a special focus on the continuous development of highly specific molecular markers and steadily improving methods of image generation. The review closes with an outlook on possible new developments of molecular imaging and advanced image evaluation techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
- Clinic for Internal Medicine (Tumor Research), University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| |
Collapse
|
6
|
Romero-Farina G, Aguadé-Bruix S. Equilibrium radionuclide angiography: Present and future. J Nucl Cardiol 2021; 28:1315-1322. [PMID: 31482533 DOI: 10.1007/s12350-019-01876-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Guillermo Romero-Farina
- Cardiology Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Santiago Aguadé-Bruix
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Farrell MB, Galt JR, Georgoulias P, Malhotra S, Pagnanelli R, Rischpler C, Savir-Baruch B. SNMMI Procedure Standard/EANM Guideline for Gated Equilibrium Radionuclide Angiography*. J Nucl Med Technol 2020; 48:126-135. [DOI: 10.2967/jnmt.120.246405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
|