1
|
Feher A, Al-Mallah MH. Is it solid enough? Diagnostic performance of solid-state detector technology without attenuation CT against invasive angiography. J Nucl Cardiol 2025:102163. [PMID: 39922531 DOI: 10.1016/j.nuclcard.2025.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Affiliation(s)
- Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| |
Collapse
|
2
|
Wu M, Xu Z, Huang Q, Shi J, Zhou K, Hong Y, Zhan Y, Zhou N. Exercise electrocardiogram combined with cadmium zinc tellurium (CZT) cardiac-dedicated single photon emission computed tomography (SPECT) predicts coronary artery disease. Clin Radiol 2025; 81:106769. [PMID: 39736220 DOI: 10.1016/j.crad.2024.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025]
Abstract
AIM Coronary artery disease (CAD) is a primary cause of mortality, prompting ongoing research into noninvasive diagnostic modalities. This study aimed to evaluate the diagnostic efficacy of exercise electrocardiography testing (EET) combined with cadmium zinc tellurium cardiac-dedicated single photon emission computed tomography (CZT-SPECT) imaging for CAD. MATERIALS AND METHODS CZT-SPECT and EET were examined in 124 patients aged 20-85 years, followed by coronary angiography to evaluate the sensitivity, specificity, positive predictive value, and negative predictive value of EET/CZT-SPECT alone and in combination. CAD was defined as the presence of > 50% stenosis at the time of coronary angiography. RESULTS The sensitivity of the EET test alone was 31.58%, the specificity was 80%, the positive predictive value (PPV) was 22.22%, and the negative predictive value (NPV) was 86.6%. The corresponding values of CZT-SPECT alone were 36.07%, 92.06%, 81.48% and 59.79%, respectively. The combined results showed that the sensitivity, specificity, PPV, and NPV were 60.00%, 90.57%, 54.55%, and 92.31%, respectively. In this study, the positive likelihood ratio (PLR) diagnosed with EET alone was 1.58, the PLR diagnosed with CZT-SPECT alone was 4.54, and the PLR diagnosed with combination was 6.36. CONCLUSION The combination of CZT-SPECT and EET showed significantly improved CAD diagnostic accuracy compared with either approach alone.
Collapse
Affiliation(s)
- M Wu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Z Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Q Huang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - J Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - K Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Y Hong
- Department of General Practice, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Y Zhan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - N Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
3
|
Wieting W, Bengel FM, Diekmann J. Comparison of global and regional myocardial blood flow quantification using dynamic solid-state detector SPECT and Tc-99 m-sestamibi or Tc-99 m-tetrofosmin in a routine clinical setting. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025:10.1007/s10554-025-03339-4. [PMID: 39885112 DOI: 10.1007/s10554-025-03339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Solid-state detector single photon emission computed tomography (SPECT) enables the acquisition of dynamic data for calculation of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Here, we report about our experiences on routine clinical use and robustness using Tc-99 m-sestamibi and Tc-99 m-tetrofosmin. 307 patients underwent dynamic list-mode myocardial perfusion imaging (MPI) and standard static MPI for clinical workup of coronary artery disease on a dedicated cardiac SPECT camera. After exclusion of 33 scans, 274 scans were eligible for MBF and MFR calculation using a 1-tissue-compartment model. Attenuation correction was performed for all patients using an external computed tomogram. Patients underwent stress-only scans, both stress and rest scans or rest-only scans using Tc-99 m-tetrofosmin or Tc-99 m-sestamibi. 30 patients without known cardiovascular comorbidities and without perfusion defect on static scans were compared in a sub analysis. Global stress myocardial blood flow (MBF) was significantly higher than rest MBF (2.3 vs. 1.1 ml/min/g; p < 0.001), and showed a high variability among individuals. Global myocardial flow reserve (MFR) was 2.1 (range 0.5-7.8). An analysis of 30 patients without known cardiovascular comorbidities yielded similar stress MBF measures for Tc-99 m-sestamibi and Tc-99 m-tetrofosmin (3.1 ± 1.2 vs. 2.8 ± 0.9 ml/min/g; p = 0.429). The use of attenuation correction lead to systematically lower MBF measures. Patients who underwent a one-day protocol had notably higher rest MBF (1.2 ± 0.5 vs. 1.0 ± 0.46 ml/min/g; p = 0.009) and consequently a lower MFR. Summed defect scores from standard static scans and presence of cardiovascular comorbidities negatively impacted MBF and MFR. Quantitative SPECT MBF and MFR in a clinical routine setting yields flow measures in range of expectation at an albeit wide range and is comprehensibly linked with results from standard static scan and patients history of cardiovascular diseases. Use of one-day protocols and attenuation correction systematically alters quantitative results. However, SPECT-derived MBF and MFR lack clinical reliability due to less validated reference ranges and high inter-individual variability.
Collapse
Affiliation(s)
- Wiebke Wieting
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Perrin M, Claudin M, Djaballah K, Boursier C, Verger A, Imbert L, Roch V, Doyen M, Marie L, Karcher G, Popovic B, Lamiral Z, Camenzind E, Marie PY. Diagnostic accuracy of low-dose myocardial perfusion imaging in a real-world setting. J Nucl Cardiol 2025:102140. [PMID: 39788413 DOI: 10.1016/j.nuclcard.2025.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND This large-scale study analyzes factors affecting the diagnostic accuracy of low-dose myocardial perfusion imaging and correlation with coronary angiography in a real-world practice. METHODS We compared data extracted from routine reports of (i) low-dose [99mTc]sestamibi stress-MPI performed with no attenuation correction and predominantly exercise stress testing and (ii) the corresponding coronary angiography. RESULTS We considered 1070 pairs of coronary angiography/stress-MPI results reported by 11 physicians. Mean MPI effective dose was 4.5 ± 2.1 mSv. The extent of MPI-ischemia was predictive of >70% but not 50%-70% coronary stenoses. A positive test was associated with a sensitivity of 74.7% (413/553) and a specificity of 53.2% (275/517) for >70% stenosis detection. Positive predictive values were lower in patients with left bundle branch block or pacemakers (LBBB/PM) (45.6% vs 64.7%, P = .006) and markedly higher for patients with MPI-ischemia ≥3 segments or associated with ST-segment depression (75.0% (165/220)) as compared to those with <3 segments MPI-ischemia, MPI-infarction or isolated ST-segment depression (57% (248.0/435), P < .001). Negative predictive values were lower for patients with previous coronary artery disease (CAD) history (58.3%), male (61.0%), and elderly patients (59.6%) (vs 72.1%, 79.2%, and 72.4%, respectively, all P < .05). CONCLUSIONS Routine results from low-dose stress-MPI, predominantly associated with exercise stress testing and uncorrected for attenuation, correlate with real-world coronary angiography results. However, this correlation is lower than that achieved with conventional study designs and affected by the definition of significant CAD and context variables (LBBB/PM, CAD history, sex, and age). Better consideration of these interacting factors could improve patient monitoring.
Collapse
Affiliation(s)
- Mathieu Perrin
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France
| | - Marine Claudin
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France
| | - Karim Djaballah
- Université de Lorraine, CHRU-Nancy, Department of Cardiology, Nancy, F-54000, France
| | - Caroline Boursier
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France
| | - Antoine Verger
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France; Université de Lorraine, INSERM U1254, IADI, Nancy, F-54000, France
| | - Laetitia Imbert
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France; Université de Lorraine, INSERM U1254, IADI, Nancy, F-54000, France
| | - Véronique Roch
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France
| | - Matthieu Doyen
- Université de Lorraine, INSERM U1254, IADI, Nancy, F-54000, France
| | | | - Gilles Karcher
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France
| | - Batric Popovic
- Université de Lorraine, CHRU-Nancy, Department of Cardiology, Nancy, F-54000, France; Université de Lorraine, INSERM, UMR-1116, DCAC, Nancy, F-54000, France
| | - Zohra Lamiral
- Université de Lorraine, CHRU-Nancy, INSERM, CIC 1433, Nancy, France
| | - Edoardo Camenzind
- Université de Lorraine, CHRU-Nancy, Department of Cardiology, Nancy, F-54000, France; Université de Lorraine, INSERM, UMR-1116, DCAC, Nancy, F-54000, France
| | - Pierre-Yves Marie
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, F-54000, France; Université de Lorraine, INSERM U1254, IADI, Nancy, F-54000, France.
| |
Collapse
|
5
|
Dobrolinska MM, Slart RHJA, Dweck MR, Buechel RR, Erba PA. Nuclear cardiology a solid pillar in the new chronic coronary syndromes ESC guidelines. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-024-07055-4. [PMID: 39760862 DOI: 10.1007/s00259-024-07055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Affiliation(s)
- Magdalena M Dobrolinska
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, Katowice, Poland
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Zurich, Switzerland
| | - Paola Anna Erba
- Department of Medicine and Surgery, Nuclear Medicine Unit, University of Milan Bicocca, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
6
|
Abedi SM, Ghadirzadeh E, Karimi H, Nezhadnaderi P, Daryabari SS, Moradi A, Khorrami Moghaddam A, Hosseinimehr SJ, Taghavi M, Golshani S, Farsavian AA, Mardanshahi A, Mostafavinia A. A comparison between 64-projection and 32-projection myocardial perfusion scintigraphy. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2025; 3:qyae142. [PMID: 39811013 PMCID: PMC11726827 DOI: 10.1093/ehjimp/qyae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Aims While most clinical guidelines recommend using a 64-projection view technique, some protocols do not specify a preference between 32-projection and 64-projection methods for conducting myocardial perfusion scintigraphy (MPS), which shows the lack of consensus in this matter. Nevertheless, these guidelines and protocols have not provided us with compelling evidence to support why the 64-projection technique is usually chosen. Thus, we aimed to determine if there is a significant difference between them in the assessment of cardiac perfusion and functional indices. Methods and results Sixty-nine patients were included in this pilot prospective, cross-sectional, cross-over, same patient control protocol study and underwent 32- and 64-projection MPS at both stress and rest phases after injecting 740-925 MBq of 99mTc-MIBI for every patient. Then, cardiac indices, including summed stress, rest, and difference scores, extent-stress and rest, left ventricular volumes and ejection-fraction, peak filling rate (PFR), and time to peak filling rate (TTPF) were recorded. Lin's concordance correlation coefficient was used to assess the agreement between protocols, and a paired sample t-test was used to compare the means of variables where appropriate. Findings revealed no significant difference as well as excellent/good agreement between the two methods in either the stress or rest state, except for the TTPF and PFR. Conclusion The findings suggest that lower-projection techniques could be adequate for routine clinical assessments without sacrificing diagnostic accuracy. However, the poor agreement for PFR and TTPF indicates that the 32-projection method may not reliably assess diastolic function, implying that the 64-projection protocol is preferable when precise evaluations are necessary.
Collapse
Affiliation(s)
- Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, 4818813371 Sari, Iran
| | - Erfan Ghadirzadeh
- Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Nezhadnaderi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amir Moradi
- Atherosclerosis Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Khorrami Moghaddam
- Department of Radiology, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Taghavi
- Department of Cardiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samad Golshani
- Department of Cardiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Asghar Farsavian
- Department of Cardiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, 4818813371 Sari, Iran
| | - Ali Mostafavinia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Zhao F, Chen Y, Zhao J, Pang Z, Wang J, Cao B, Li J. Impact of CT attenuation correction on viable myocardium detection in combined SPECT and PET/CT: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e40175. [PMID: 39470532 PMCID: PMC11521058 DOI: 10.1097/md.0000000000040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
The influence of computed tomography attenuation correction (CTAC) on the accuracy of diagnosing viable myocardium using Tc-99m-MIBI dedicated cardiac cadmium-zinc-telluride (CZT) single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) combined with F-18-FDG Positron Emission Tomography/Computed Tomography (PET/CT) metabolic imaging, compared with conventional SPECT MPI, remains to be fully elucidated. To evaluate the impact of CTAC on the accuracy of diagnosing viable myocardium using Tc-99m-MIBI dedicated cardiac CZT SPECT MPI combined with F-18-FDG PET/CT, compared to conventional SPECT MPI. 193 patients underwent CZT SPECT and F-18-FDG PET/CT imaging, while 39 patients underwent conventional SPECT and F-18-FDG PET/CT imaging, with both groups utilizing CT for attenuation correction. The injured myocardium (hibernating and scarring) was quantified using the Q.PET software. After CTAC, both groups showed significant improvements in perfusion of the injured myocardial areas, particularly in the inferior wall (INF). The reduction in perfusion was more notable in the CZT SPECT group than that in the conventional group, particularly in the inferior and lateral walls. Among patients with large cardiac chambers, those undergoing MPI with CZT, with normal weights, or males, hibernating myocardium (HM) and scar post-CTAC reductions were particularly significant in the INF. If HM ≥ 10% is considered an indicator for recommended revascularization, among the 87 patients without prior cardiac bypass, 25 (28.7%) might not require revascularization treatment. Dedicated cardiac CZT SPECT and conventional SPECT MPI combined with F-18-FDG PET/CT significantly influenced the assessment of viable myocardium. The impact of CTAC was more profound in dedicated cardiac CZT SPECT, particularly in the INF region. CTAC significantly enhances the accuracy of viable myocardial assessment and may influence clinical decisions regarding revascularization therapy. Therefore, CTAC should be routinely used in dedicated cardiac CZT SPECT MPI combined with F-18-FDG PET/CT for myocardial viability diagnosis.
Collapse
Affiliation(s)
- Fukai Zhao
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, P.R. China
| | - Yue Chen
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, P.R. China
| | - Jiaming Zhao
- Department of Intelligence and Computing, Tianjin University, Tianjin, P.R. China
| | - Zekun Pang
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, P.R. China
| | - Jiao Wang
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, P.R. China
| | - Bing Cao
- Department of Intelligence and Computing, Tianjin University, Tianjin, P.R. China
| | - Jianming Li
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
8
|
Vrints C, Andreotti F, Koskinas KC, Rossello X, Adamo M, Ainslie J, Banning AP, Budaj A, Buechel RR, Chiariello GA, Chieffo A, Christodorescu RM, Deaton C, Doenst T, Jones HW, Kunadian V, Mehilli J, Milojevic M, Piek JJ, Pugliese F, Rubboli A, Semb AG, Senior R, Ten Berg JM, Van Belle E, Van Craenenbroeck EM, Vidal-Perez R, Winther S. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J 2024; 45:3415-3537. [PMID: 39210710 DOI: 10.1093/eurheartj/ehae177] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
9
|
Patel KK, Peri-Okonny PA, Giorgetti A, Shaw LJ, Gimelli A. Value of Ischemia and Coronary Anatomy in Prognosis and Guiding Revascularization Among Patients With Stable Ischemic Heart Disease. Circ Cardiovasc Imaging 2024; 17:e016587. [PMID: 39247957 PMCID: PMC11439561 DOI: 10.1161/circimaging.123.016587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The value of physiological ischemia versus anatomic severity of disease for prognosis and management of patients with stable coronary artery disease (CAD) is widely debated. METHODS A total of 1764 patients who had rest-stress cadmium-zinc-telluride single-photon emission computed tomography myocardial perfusion imaging and angiography (invasive or computed tomography) were prospectively enrolled and followed for cardiac death/nonfatal myocardial infarction. The CAD prognostic index (CADPI) was used to quantify the extent and severity of angiographic disease. Prognostic value was assessed using Cox models, adjusted for pretest risk, known CAD, stressor, left ventricular ejection fraction, %ischemia and infarct, CADPI, and early (90-day) revascularization. Incremental prognostic value was evaluated using net reclassification index. RESULTS The mean age was 69.7±9.5 years, 24.4% were women, and 29.3% had known CAD. Significant ischemia (>10%) was present in 28.4%. Nonobstructive, single, and multivessel disease was present in 256 (14.5%), 772 (43.8%), and 736 (41.7%), respectively. Early revascularization occurred in 579 (32.8%). Cardiac death/myocardial infarction occurred in 148 (8.4%) over a 4.6-year median follow-up. Both %ischemia and CADPI provided independent and incremental prognostic value over pretest clinical risk (P<0.001). In a model containing both ischemia and anatomy, ischemia was prognostic (hazard ratio per 5% ↑, 1.35 [95% CI, 1.11-1.63]; P=0.002) but CADPI was not (hazard ratio per 10-unit ↑, 1.09 [95% CI, 0.99-1.20]; P=0.07). Early revascularization modified the risk associated with %ischemia (interaction P=0.003) but not with CADPI (interaction P=0.6). %Ischemia and single-photon emission computed tomography variables added incremental prognostic value over clinical risk and CADPI (net reclassification index, 20.3% [95% CI, 9%-32%]; P<0.05); however, CADPI was not incrementally prognostic beyond pretest risk, %ischemia, and single-photon emission computed tomography variables (net reclassification index, 3.1% [95% CI, -5% to 15%]; P=0.21). CONCLUSIONS Ischemic burden provides independent and incremental prognostic value beyond CAD anatomy and identifies patients who benefit from early revascularization. The anatomic extent of disease has independent prognostic value over clinical risk factors but offers limited incremental benefit for prognosis and guiding revascularization beyond physiological severity (ischemia).
Collapse
Affiliation(s)
- Krishna K Patel
- Department of Medicine (Cardiology) and Population Health Science and Policy, Blavatnik Family Women's Health Research Institute, Zena and Michael A. Weiner Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York (K.K.P., L.J.S.)
| | - Poghni A Peri-Okonny
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT (P.A.P.-O.)
| | - Assuero Giorgetti
- Department of Imaging, Fondazione Toscana Gabriele Monasterio, Pisa, Italy (A. Giorgetti, A. Gimelli)
| | - Leslee J Shaw
- Department of Medicine (Cardiology) and Population Health Science and Policy, Blavatnik Family Women's Health Research Institute, Zena and Michael A. Weiner Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York (K.K.P., L.J.S.)
| | - Alessia Gimelli
- Department of Imaging, Fondazione Toscana Gabriele Monasterio, Pisa, Italy (A. Giorgetti, A. Gimelli)
| |
Collapse
|
10
|
Chien SC, Wang SY, Tsai CT, Shiau YC, Wu YW. Significant Association of Serum Albumin With the Severity of Coronary Microvascular Dysfunction Using Dynamic CZT-SPECT. Microcirculation 2024; 31:e12853. [PMID: 38690605 DOI: 10.1111/micc.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF. METHODS We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5-4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared. RESULTS The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min-1 g-1) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min-1 g-1) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32-5.48) for Group 2 and 34.9 (95% CI: 13.23-92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76. CONCLUSION Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.
Collapse
Affiliation(s)
- Shih-Chieh Chien
- Cardiovascular Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Ting Tsai
- Cardiovascular Division, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Chien Shiau
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Tassetti L, Sfriso E, Torlone F, Baggiano A, Mushtaq S, Cannata F, Del Torto A, Fazzari F, Fusini L, Junod D, Maragna R, Volpe A, Carrabba N, Conte E, Guglielmo M, La Mura L, Pergola V, Pedrinelli R, Indolfi C, Sinagra G, Perrone Filardi P, Guaricci AI, Pontone G. The Role of Multimodality Imaging (CT & MR) as a Guide to the Management of Chronic Coronary Syndromes. J Clin Med 2024; 13:3450. [PMID: 38929984 PMCID: PMC11205051 DOI: 10.3390/jcm13123450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic coronary syndrome (CCS) is one of the leading cardiovascular causes of morbidity, mortality, and use of medical resources. After the introduction by international guidelines of the same level of recommendation to non-invasive imaging techniques in CCS evaluation, a large debate arose about the dilemma of choosing anatomical (with coronary computed tomography angiography (CCTA)) or functional imaging (with stress echocardiography (SE), cardiovascular magnetic resonance (CMR), or nuclear imaging techniques) as a first diagnostic evaluation. The determinant role of the atherosclerotic burden in defining cardiovascular risk and prognosis more than myocardial inducible ischemia has progressively increased the use of a first anatomical evaluation with CCTA in a wide range of pre-test probability in CCS patients. Functional testing holds importance, both because the role of revascularization in symptomatic patients with proven ischemia is well defined and because functional imaging, particularly with stress cardiac magnetic resonance (s-CMR), gives further prognostic information regarding LV function, detection of myocardial viability, and tissue characterization. Emerging techniques such as stress computed tomography perfusion (s-CTP) and fractional flow reserve derived from CT (FFRCT), combining anatomical and functional evaluation, appear capable of addressing the need for a single non-invasive examination, especially in patients with high risk or previous revascularization. Furthermore, CCTA in peri-procedural planning is promising to acquire greater importance in the non-invasive planning and guiding of complex coronary revascularization procedures, both by defining the correct strategy of interventional procedure and by improving patient selection. This review explores the different roles of non-invasive imaging techniques in managing CCS patients, also providing insights into preoperative planning for percutaneous or surgical myocardial revascularization.
Collapse
Affiliation(s)
- Luigi Tassetti
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Enrico Sfriso
- Radiology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | | | - Andrea Baggiano
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Saima Mushtaq
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Francesco Cannata
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Alberico Del Torto
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Fabio Fazzari
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Laura Fusini
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Daniele Junod
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Riccardo Maragna
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Alessandra Volpe
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy;
| | - Edoardo Conte
- Department of Clinical Cardiology and Cardiovascular Imaging, Galeazzi-Sant’Ambrogio Hospital IRCCS, 20157 Milan, Italy;
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Lucia La Mura
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy; (L.L.M.); (P.P.F.)
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| | - Roberto Pedrinelli
- Cardiac, Thoracic and Vascular Department, University of Pisa, 56124 Pisa, Italy;
| | - Ciro Indolfi
- Istituto di Cardiologia, Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Gianfranco Sinagra
- Cardiology Specialty School, University of Trieste, 34127 Trieste, Italy;
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), 34149 Trieste, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy; (L.L.M.); (P.P.F.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Gianluca Pontone
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
12
|
Cui L, Wang Y, Chen W, Huang P, Tang Z, Wang J, Li J, Tse G, Liu T, Wang Y, Chen K. Coronary microvascular dysfunction and myocardial area at risk assessed by cadmium zinc telluride single photon emission computed tomography after primary percutaneous coronary intervention in acute myocardial infarction patients. Quant Imaging Med Surg 2024; 14:3816-3827. [PMID: 38846287 PMCID: PMC11151247 DOI: 10.21037/qims-23-1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/30/2024] [Indexed: 06/09/2024]
Abstract
Background A high proportion of coronary microvascular dysfunction (CMD) has been observed in patients with acute myocardial infarction (AMI) who have received primary percutaneous coronary intervention (PCI), which may affect their prognosis. This study used cadmium zinc telluride (CZT) single photon emission computed tomography (SPECT) to evaluate the prevalence and characteristics of CMD and myocardial area at risk (AAR) in AMI patients who had undergone primary PCI. Methods We conducted a single-center cross-sectional retrospective study at TEDA International Cardiovascular Hospital from September 2021 to June 2022. A total of 83 patients received primary PCI for AMI. Subsequently, a rest/stress dynamic and routine gated myocardial perfusion imaging (MPI) were performed 1 week after PCI. The CMD group was defined as having a residual stenosis of infarct-related artery (IRA) <50% and myocardial flow reserve (MFR) <2.0 in this corresponding territory, whereas MFR ≥2.0 of IRA pertained to the normal control group. Rest-AAR of infarction (%) and stress-AAR (%) were expressed by the percentage of measured rest-defect-size and stress-defect-size in the left ventricular area, respectively. Logistic regression analyses were performed to identify significant predictors of CMD. Results A total of 53 patients with a mean age of 57.06±11.99 years were recruited, of whom 81.1% were ST-segment elevation myocardial infarction (STEMI). The proportion of patients with CMD was 79.2% (42/53). The time of pain to SPECT imaging was 7.50±1.27 days in the CMD group and 7.45±1.86 days among controls. CMD patients had a higher body mass index (BMI) than controls (26.48±3.26 vs. 24.36±2.73 kg/m2, P=0.053), and a higher proportion of STEMI, thrombolysis in myocardial infarction (TIMI) 0 grade of IRA prior PCI than controls (88.1% vs. 54.5%, P=0.011; 61.9% vs. 18.2%, P=0.004, respectively). No significant difference was identified in the rest-myocardial blood flow (MBF) of IRA between the 2 groups, whereas the stress-MBF and MFR of IRA, rest-AAR, and stress-AAR in the CMD group were remarkably lowered. Higher BMI [odds ratio (OR): 1.332, 95% confidence interval (CI): 1.008-1.760, P=0.044] and stress-AAR (OR: 1.994, 95% CI: 1.122-3.543, P=0.019) were used as independent predictors of CMD occurrence. Conclusions The prevalence of CMD is high in AMI patients who received primary PCI. Each 1 kg/m2 increase in BMI was associated with a 1.3-fold increase in CMD risk. A 5% increase in stress-AAR was associated with a nearly 2-fold increase in CMD risk. Increased BMI and stress-AAR predicts decreased coronary reserve function.
Collapse
Affiliation(s)
- Lijun Cui
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Yangchongzi Wang
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Weiqiang Chen
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Ping Huang
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Zijian Tang
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Jiao Wang
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Jianming Li
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yongde Wang
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Kangyin Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Kwiecinski J. Role of 18F-sodium fluoride positron emission tomography in imaging atherosclerosis. J Nucl Cardiol 2024; 35:101845. [PMID: 38479575 DOI: 10.1016/j.nuclcard.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Atherosclerosis involving vascular beds across the human body remains the leading cause of death worldwide. Coronary and peripheral artery disease, which are almost universally a result of atherosclerotic plaque, can manifest clinically as myocardial infarctions, ischemic stroke, or acute lower-limb ischemia. Beyond imaging myocardial perfusion and blood-flow, nuclear imaging has the potential to depict the activity of the processes that are directly implicated in the atherosclerotic plaque progression and rupture. Out of several tested tracers to date, the literature is most advanced for 18F-sodium fluoride positron emission tomography. In this review, we present the latest data in the field of atherosclerotic 18F-sodium fluoride positron emission tomography imaging, discuss the advantages and limitation of the techniques, and highlight the aspects that require further research in the future.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland.
| |
Collapse
|
14
|
Massalha S, Kennedy J, Hussein E, Mahida B, Keidar Z. Cardiovascular Imaging in Women. Semin Nucl Med 2024; 54:191-205. [PMID: 38395672 DOI: 10.1053/j.semnuclmed.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Multimodality cardiovascular imaging is a cornerstone diagnostic tool in the diagnosis, risk stratification, and management of cardiovascular diseases, whether those involving the coronary tree, myocardial, or pericardial diseases in general and particularly in women. This manuscript aims to shed some light and summarize the very features of cardiovascular disease in women, explore their unique characteristics and discuss the role of cardiovascular imaging in ischemic heart disease and cardiomyopathies. The role of four imaging modalities will be discussed including nuclear medicine, echocardiography, noninvasive coronary angiography, and cardiac magnetic resonance.
Collapse
Affiliation(s)
- Samia Massalha
- Department of Cardiology, Rambam Health Care Campus, Haifa. Israel; Department of Nuclear Medicine, Rambam Health Care Campus, Haifa. Israel.
| | - John Kennedy
- Department of Cardiology, Rambam Health Care Campus, Haifa. Israel; Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Essam Hussein
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa. Israel
| | - Besma Mahida
- Nuclear Medicine BICHAT Hospital Assistance Publique Hôpitaux de Paris, Paris. France; LVTS, Inserm U1148, Équipe 4 (Imagerie Cardio-Vasculaire), Paris, France
| | - Zohar Keidar
- Department of Cardiology, Rambam Health Care Campus, Haifa. Israel; Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Tingen HSA, van Praagh GD, Nienhuis PH, Tubben A, van Rijsewijk ND, ten Hove D, Mushari NA, Martinez-Lucio TS, Mendoza-Ibañez OI, van Sluis J, Tsoumpas C, Glaudemans AW, Slart RH. The clinical value of quantitative cardiovascular molecular imaging: a step towards precision medicine. Br J Radiol 2023; 96:20230704. [PMID: 37786997 PMCID: PMC10646628 DOI: 10.1259/bjr.20230704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and have an increasing impact on society. Precision medicine, in which optimal care is identified for an individual or a group of individuals rather than for the average population, might provide significant health benefits for this patient group and decrease CVD morbidity and mortality. Molecular imaging provides the opportunity to assess biological processes in individuals in addition to anatomical context provided by other imaging modalities and could prove to be essential in the implementation of precision medicine in CVD. New developments in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) systems, combined with rapid innovations in promising and specific radiopharmaceuticals, provide an impressive improvement of diagnostic accuracy and therapy evaluation. This may result in improved health outcomes in CVD patients, thereby reducing societal impact. Furthermore, recent technical advances have led to new possibilities for accurate image quantification, dynamic imaging, and quantification of radiotracer kinetics. This potentially allows for better evaluation of disease activity over time and treatment response monitoring. However, the clinical implementation of these new methods has been slow. This review describes the recent advances in molecular imaging and the clinical value of quantitative PET and SPECT in various fields in cardiovascular molecular imaging, such as atherosclerosis, myocardial perfusion and ischemia, infiltrative cardiomyopathies, systemic vascular diseases, and infectious cardiovascular diseases. Moreover, the challenges that need to be overcome to achieve clinical translation are addressed, and future directions are provided.
Collapse
Affiliation(s)
- Hendrea Sanne Aletta Tingen
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gijs D. van Praagh
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alwin Tubben
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nick D. van Rijsewijk
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Derk ten Hove
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nouf A. Mushari
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - T. Samara Martinez-Lucio
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Oscar I. Mendoza-Ibañez
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Andor W.J.M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | | |
Collapse
|
16
|
He M, Han W, Shi C, Wang M, Li J, He W, Xu X, Gan Q, Guan S, Zhang L, Chen Y, Chang X, Li T, Qu X. A Comparison of Dynamic SPECT Coronary Flow Reserve with TIMI Frame Count in the Treatment of Non-Obstructive Epicardial Coronary Patients. Clin Interv Aging 2023; 18:1831-1839. [PMID: 37937265 PMCID: PMC10627069 DOI: 10.2147/cia.s429450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
Background Microvascular dysfunction in patients with non-obstructive epicardial coronary may aggravate patient's symptoms or lead to various clinical events. Objective To investigate the correlation between dynamic single photon emission computed tomography (D-SPECT) derived coronary flow reserve (CFR) and TIMI frame count (TFC) in patients with non-obstructive epicardial coronary patients. Methods Patients with suspected or known stable CAD who were recommended to undergo invasive coronary angiography were prospectively enrolled in this study. Those who had non-obstructive coronary received TIMI frame count (TFC) and D-SPECT. A cut-off value of >40 was defined as slow flow referred to TFC. Results A total of 47 patients diagnosed with non-obstructive coronary were enrolled. The mean age of patients was 66.09 ± 8.36 years, and 46.8% were male. Dynamic SPECT derived coronary flow reserve (CFR) was significantly correlated with TIMI frame count in 3 epicardial coronary (LAD: r=-0.506, P = 0.0003; LCX: r= -0.532, P = 0.0001; RCA: r= -0.657, P < 0.0001). The sensitivity and specificity of CFR in identifying abnormal TIMI frame count < 40 was 100.0% and 57.6% in LAD, 62.5% and 87.0% in LCX, 83.9% and 75.0% in RCA, respectively. The optimal CFR cut-off values were 2.02, 2.47, and 1.96 among the three vessels. Conclusion In patients with non-obstructive coronary, CFR derived from D-SPECT was strongly correlated with TFC. This study demonstrates that that CFR may be an alternative non-invasive method for identifying slow flow in non-obstructive coronary.
Collapse
Affiliation(s)
- Mingping He
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Wenzheng Han
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Chuan Shi
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Ming Wang
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Junheng Li
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Wei He
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Xinxin Xu
- Clinical Research Center for Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Qian Gan
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Shaofeng Guan
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Liang Zhang
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Yang Chen
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Xifeng Chang
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Tianqi Li
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
D'Antonio A, Mannarino T. Exploring coronary microvascular function by quantitative CZT-SPECT: a small step or giant leap for INOCA patients? Eur J Nucl Med Mol Imaging 2023; 50:3806-3808. [PMID: 37535108 DOI: 10.1007/s00259-023-06358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Affiliation(s)
- Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
18
|
Bailly M, Courtehoux M, Metrard G, Angoulvant D, Ribeiro MJ. Dynamic CZT-SPECT: Characterizing the Lower Values of Myocardial Blood Flow and Reserve. Clin Nucl Med 2023; 48:969-970. [PMID: 37756437 PMCID: PMC10581433 DOI: 10.1097/rlu.0000000000004849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Indexed: 09/29/2023]
Abstract
ABSTRACT CZT-SPECT myocardial perfusion enables quantification of myocardial blood flow (MBF). Normal values and thresholds have been accurately defined in PET but remain unclear in SPECT. The aim of this study was to report normal MBF and myocardial flow reserve values in very low-risk patients referred for coronary artery disease screening with dynamic SPECT, in comparison with patients experiencing coronary artery disease. Eighty-four patients (31 male) were analyzed. The mean 10 years risk of fatal cardiovascular events score was 2.7% ± 1.4%. The mean global stress MBF and myocardial flow reserve were 1.6 ± 0.6 mL/min/g and 2.7 ± 0.7.
Collapse
Affiliation(s)
- Matthieu Bailly
- From the Nuclear Medicine Department, CHR Orleans
- UPR 4301, CBM, CNRS Orleans, Orleans
| | | | - Gilles Metrard
- From the Nuclear Medicine Department, CHR Orleans
- UPR 4301, CBM, CNRS Orleans, Orleans
| | | | - Maria Joao Ribeiro
- Nuclear Medicine Department
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
19
|
Bullock-Palmer RP. Utility of myocardial blood flow assessment with dynamic CZT single photon emission computed tomography in patients with myocardial bridging: Is this 'wishful thinking' in this dynamic situation? J Nucl Cardiol 2023; 30:2068-2072. [PMID: 37340234 DOI: 10.1007/s12350-023-03319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
|
20
|
Xu R, Yang H, Zhang J, Chen S, Pang L, Wu Y, Pei Z, Shi H, Li C, Ge J. Dynamic perfusion SPECT for functional evaluation in symptomatic patients with myocardial bridging. J Nucl Cardiol 2023; 30:2058-2067. [PMID: 37095328 DOI: 10.1007/s12350-023-03241-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/28/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND The aim of this study was to investigate the feasibility and diagnostic value of myocardial flow reserve (MFR) assessed by rest/stress myocardial perfusion imaging with dynamic single-photon emission computed tomography (SPECT) in the functional evaluation of myocardial bridge (MB). METHODS From May 2017 to July 2021, patients with angiographically confirmed isolated MB on the left anterior descending artery (LAD) who underwent dynamic SPECT myocardial perfusion imaging were retrospectively included. The assessment of semiquantitative indices of myocardial perfusion (summed stress scores, SSS) and quantitative parameters (MFR) was performed. RESULTS A total of 49 patients were enrolled. The mean age of the subjects was 61.0 ± 9.0 years. All of the patients were symptomatic, and 16 cases (32.7%) presented with typical angina. SPECT-derived MFR showed a borderline significantly negative correlation with SSS (r = 0.261, P = .070). There was a trend of higher prevalence of impaired myocardial perfusion defined as MFR < 2 than as SSS ≥ 4 (42.9% vs 26.5%; P = .090). CONCLUSION Our data support that SPECT MFR may be a useful parameter for the functional assessment of MB. In patients with MB, the use of dynamic SPECT could be a potential method for hemodynamic assessment.
Collapse
Affiliation(s)
- Rende Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Hao Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lifang Pang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yizhe Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
21
|
Wells RG, Bengel FM, Camoni L, Cerudelli E, Cuddy-Walsh SG, Diekmann J, Han L, Kadoya Y, Kawaguchi N, Keng YJF, Miyagawa M, Ratner H, Teng XF, Ruddy TD. Multicenter Evaluation of the Feasibility of Clinical Implementation of SPECT Myocardial Blood Flow Measurement: Intersite Variability and Imaging Time. Circ Cardiovasc Imaging 2023; 16:e015009. [PMID: 37800325 DOI: 10.1161/circimaging.122.015009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/17/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Single-center studies have shown that single photon emission computed tomography myocardial blood flow (MBF) measurement is accurate compared with MBF measured with microspheres in a porcine model, positron emission tomography, and angiography. Clinical implementation requires consistency across multiple sites. The study goal is to determine the intersite processing repeatability of single photon emission computed tomography MBF and the additional camera time required. METHODS Five sites (Canada, Italy, Japan, Germany, and Singapore) each acquired 25 to 35 MBF studies at rest and with pharmacological stress using technetium-99m-tetrofosmin on a pinhole-collimated cadmium-zinc-telluride-based cardiac single photon emission computed tomography camera with standardized list-mode imaging and processing protocols. Patients had intermediate to high pretest probability of coronary artery disease. MBF was measured locally and at a core laboratory using commercially available software. The time a room was occupied for an MBF study was compared with that for a standard rest/stress myocardial perfusion study. RESULTS With motion correction, the overall correlation in MBF between core laboratory and local site was 0.93 (range, 0.87-0.97) at rest, 0.90 (range, 0.84-0.96) at stress, and 0.84 (range, 0.70-0.92) for myocardial flow reserve. The local-to-core difference in global MBF (bias-MBF) was 5.4% (-3.8% to 14.8%; median [interquartile range]) at rest and 5.4% (-6.2% to 19.4%) at stress. Between the 5 sites, bias-MBF ranged from -1.6% to 11.0% at rest and from -1.9% to 16.3% at stress; the interquartile range in bias-MBF was between 9.3% (4.8%-14.0%) and 22.3% (-10.3% to 12.0%) at rest and between 17.0% (-11.3% to 5.6%) and 33.3% (-10.4% to 22.9%) at stress and was not significantly different between most sites. Both bias and interquartile range were like previously reported interobserver variability and less than the SD of the test-retest difference of 30%. The overall difference in myocardial flow reserve was 1.52% (-10.6% to 11.3%). There were no significant differences between with and without motion correction. The average additional acquisition time varied between sites from 44 to 79 minutes. CONCLUSIONS The average bias-MBF and bias-MFR values were small with standard deviations substantially less than the test-retest variability. This demonstrates that MBF can be measured consistently across multiple sites and further supports that this technique can be reliably implemented. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03427749.
Collapse
Affiliation(s)
- R Glenn Wells
- Cardiology, University of Ottawa Heart Institute, Ottawa, Canada (R.G.W., S.G.C.-W., L.H., Y.K., T.D.R.)
| | - Frank M Bengel
- Medizinische Hochschule Hannover, Hannover, Germany (F.M.B., J.D.)
| | - Luca Camoni
- Nuclear Medicine, Università & Spedali Civili, Brescia, Italy (L.C., E.C.)
| | | | - Sarah G Cuddy-Walsh
- Cardiology, University of Ottawa Heart Institute, Ottawa, Canada (R.G.W., S.G.C.-W., L.H., Y.K., T.D.R.)
| | - Johanna Diekmann
- Medizinische Hochschule Hannover, Hannover, Germany (F.M.B., J.D.)
| | - Lewis Han
- Cardiology, University of Ottawa Heart Institute, Ottawa, Canada (R.G.W., S.G.C.-W., L.H., Y.K., T.D.R.)
| | - Yoshito Kadoya
- Cardiology, University of Ottawa Heart Institute, Ottawa, Canada (R.G.W., S.G.C.-W., L.H., Y.K., T.D.R.)
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan (N.K., M.M.)
| | | | - Masao Miyagawa
- Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan (N.K., M.M.)
| | | | - Xue Fen Teng
- Cardiology, National Heart Center Singapore, Singapore (Y.J.F.K., X.F.T.)
| | - Terrence D Ruddy
- Cardiology, University of Ottawa Heart Institute, Ottawa, Canada (R.G.W., S.G.C.-W., L.H., Y.K., T.D.R.)
| |
Collapse
|
22
|
Assante R, Zampella E, Cantoni V, Green R, D'Antonio A, Mannarino T, Gaudieri V, Nappi C, Buongiorno P, Panico M, Petretta M, Cuocolo A, Acampa W. Prognostic value of myocardial perfusion imaging by cadmium zinc telluride single-photon emission computed tomography in patients with suspected or known coronary artery disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2023; 50:3647-3658. [PMID: 37480369 PMCID: PMC10547640 DOI: 10.1007/s00259-023-06344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Aim of this study was to define the prognostic value of stress myocardial perfusion imaging by cadmium zinc telluride (CZT) single-photon emission computed tomography (SPECT) for prediction of adverse cardiovascular events in patients with known or suspected coronary artery disease (CAD). METHODS AND RESULTS Studies published until November 2022 were identified by database search. We included studies using stress myocardial perfusion imaging by CZT-SPECT to evaluate subjects with known or suspected CAD and providing primary data of adverse cardiovascular events. Total of 12 studies were finally included recruiting 36,415 patients. Pooled hazard ratio (HR) for the occurrence of adverse events was 2.17 (95% confidence interval, CI, 1.78-2.65) and heterogeneity was 66.1% (P = 0.001). Five studies reported data on adjusted HR for the occurrence of adverse events. Pooled HR was 1.69 (95% CI, 1.44-1.98) and heterogeneity was 44.9% (P = 0.123). Seven studies reported data on unadjusted HR for the occurrence of adverse events. Pooled HR was 2.72 (95% CI, 2.00-3.70). Nine studies reported data useful to calculate separately the incidence rate of adverse events in patients with abnormal and normal myocardial perfusion. Pooled incidence rate ratio was 2.38 (95% CI, 1.39-4.06) and heterogeneity was 84.6% (P < 0.001). The funnel plot showed no evidence of asymmetry (P = 0.517). At meta-regression analysis, we found an association between HR for adverse events and presence of angina symptoms and family history of CAD. CONCLUSIONS Stress myocardial perfusion imaging by CZT-SPECT is a valuable noninvasive prognostic indicator for adverse cardiovascular events in patients with known or suspected CAD.
Collapse
Affiliation(s)
- Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Cantoni
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Green
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Buongiorno
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mariarosaria Panico
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | | | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
23
|
Ruddy TD, Tavoosi A, Taqueti VR. Role of nuclear cardiology in diagnosis and risk stratification of coronary microvascular disease. J Nucl Cardiol 2023; 30:1327-1340. [PMID: 35851643 DOI: 10.1007/s12350-022-03051-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 10/17/2022]
Abstract
Coronary flow reserve (CFR) with positron emission tomography/computed tomography (PET/CT) has an important role in the diagnosis of coronary microvascular disease (CMD), aids risk stratification and may be useful in monitoring therapy. CMD contributes to symptoms and a worse prognosis in patients with coronary artery disease (CAD), nonischemic cardiomyopathies, and heart failure. CFR measurements may improve our understanding of the role of CMD in symptoms and prognosis in CAD and other cardiovascular diseases. The clinical presentation of CAD has changed. The prevalence of nonobstructive CAD has increased to about 50% of patients with angina undergoing angiography. Ischemia with nonobstructive arteries (INOCA) is recognized as an important cause of symptoms and has an adverse prognosis. Patients with INOCA may have ischemia due to CMD, epicardial vasospasm or diffuse nonobstructive CAD. Reduced CFR in patients with INOCA identifies a high-risk group that may benefit from management strategies specific for CMD. Although measurement of CFR by PET/CT has excellent accuracy and repeatability, use is limited by cost and availability. CFR measurement with single-photon emission tomography (SPECT) is feasible, validated, and would increase availability and use of CFR. Patients with CMD can be identified by reduced CFR and selected for specific therapies.
Collapse
Affiliation(s)
- Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
| | - Anahita Tavoosi
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Viviany R Taqueti
- Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Gherghe M, Lazar AM, Sterea MC, Spiridon PM, Motas N, Gales LN, Coriu D, Badelita SN, Mutuleanu MD. Quantitative SPECT/CT Parameters in the Assessment of Transthyretin Cardiac Amyloidosis-A New Dimension of Molecular Imaging. J Cardiovasc Dev Dis 2023; 10:242. [PMID: 37367407 DOI: 10.3390/jcdd10060242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
AIMS Cardiac transthyretin amyloidosis (ATTR) represents the accumulation of misfolded transthyretin in the heart interstitium. Planar scintigraphy with bone-seeking tracers has long been established as one of the three main steps in the non-invasive diagnosis of ATTR, but lately, single-photon emission computed tomography (SPECT) has gained wide recognition for its abilities to exclude false positive results and offer a possibility for amyloid burden quantitation. We performed a systematic review of the existing literature to provide an overview of the available SPECT-based parameters and their diagnostic performances in the assessment of cardiac ATTR. Methods and Methods: Among the 43 papers initially identified, 27 articles were screened for eligibility and 10 met the inclusion criteria. We summarised the available literature based on radiotracer, SPECT acquisition protocol, analysed parameters and their correlation to planar semi-quantitative indices. RESULTS Ten articles provided accurate details about SPECT-derived parameters in cardiac ATTR and their diagnostic potential. Five studies performed phantom studies for accurate calibration of the gamma cameras. All papers described good correlation of quantitative parameters to the Perugini grading system. CONCLUSIONS Despite little published literature on quantitative SPECT in the assessment of cardiac ATTR, this method offers good prospects in the appraisal of cardiac amyloid burden and treatment monitoring.
Collapse
Affiliation(s)
- Mirela Gherghe
- Nuclear Medicine Department, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Nuclear Medicine Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Alexandra Maria Lazar
- Nuclear Medicine Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
- Carcinogenesis and Molecular Biology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Maria-Carla Sterea
- Nuclear Medicine Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Paula Monica Spiridon
- Nuclear Medicine Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Natalia Motas
- Department of Thoracic Surgery, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Clinic of Thoracic Surgery, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Laurentia Nicoleta Gales
- Oncology Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
- Oncology Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Daniel Coriu
- Hematology Department, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Hematology Department, Fundeni Clinical Institute, 022322 Bucharest, Romania
| | | | - Mario-Demian Mutuleanu
- Nuclear Medicine Department, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Nuclear Medicine Department, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| |
Collapse
|
25
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2022: single photon emission computed tomography. J Nucl Cardiol 2023; 30:452-478. [PMID: 36797458 DOI: 10.1007/s12350-023-03216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
In this review, we will summarize a selection of articles on single-photon emission computed tomography published in the Journal of Nuclear Cardiology in 2022. The aim of this review is to concisely recap major advancements in the field to provide the reader a glimpse of the research published in the journal over the last year. This review will place emphasis on myocardial perfusion imaging using single-photon emission computed tomography summarizing advances in the field including in prognosis, non-perfusion variables, attenuation compensation, machine learning and camera design. It will also review nuclear imaging advances in amyloidosis, left ventricular mechanical dyssynchrony, cardiac innervation, and lung perfusion. We encourage interested readers to go back to the original articles, and editorials, for a comprehensive read as necessary but hope that this yearly review will be helpful in reminding readers of articles they have seen and attracting their attentions to ones they have missed.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Augusta University, Augusta, GA, USA
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, GSB 446, 1900 University BLVD, Birmingham, AL, 35294, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
26
|
Advances in Single-Photon Emission Computed Tomography. Cardiol Clin 2023; 41:117-127. [PMID: 37003670 DOI: 10.1016/j.ccl.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The clinical presentation of coronary artery disease (CAD) has changed during the last 20 years with less ischemia on stress testing and more nonobstructive CAD on coronary angiography. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging should include the measurement of myocardial flow reserve and assessment of coronary calcium for the diagnosis of nonobstructive CAD and coronary microvascular disease. SPECT/CT systems provide reliable attenuation correction for better specificity and low-dose CT for coronary calcium evaluation. SPECT MFR measurement is accurate, well validated, and repeatable.
Collapse
|
27
|
Ueng KC, Chiang CE, Chao TH, Wu YW, Lee WL, Li YH, Ting KH, Su CH, Lin HJ, Su TC, Liu TJ, Lin TH, Hsu PC, Wang YC, Chen ZC, Jen HL, Lin PL, Ko FY, Yen HW, Chen WJ, Hou CJY. 2023 Guidelines of the Taiwan Society of Cardiology on the Diagnosis and Management of Chronic Coronary Syndrome. ACTA CARDIOLOGICA SINICA 2023; 39:4-96. [PMID: 36685161 PMCID: PMC9829849 DOI: 10.6515/acs.202301_39(1).20221103a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 01/24/2023]
Abstract
Coronary artery disease (CAD) covers a wide spectrum from persons who are asymptomatic to those presenting with acute coronary syndromes (ACS) and sudden cardiac death. Coronary atherosclerotic disease is a chronic, progressive process that leads to atherosclerotic plaque development and progression within the epicardial coronary arteries. Being a dynamic process, CAD generally presents with a prolonged stable phase, which may then suddenly become unstable and lead to an acute coronary event. Thus, the concept of "stable CAD" may be misleading, as the risk for acute events continues to exist, despite the use of pharmacological therapies and revascularization. Many advances in coronary care have been made, and guidelines from other international societies have been updated. The 2023 guidelines of the Taiwan Society of Cardiology for CAD introduce a new concept that categorizes the disease entity according to its clinical presentation into acute or chronic coronary syndromes (ACS and CCS, respectively). Previously defined as stable CAD, CCS include a heterogeneous population with or without chest pain, with or without prior ACS, and with or without previous coronary revascularization procedures. As cardiologists, we now face the complexity of CAD, which involves not only the epicardial but also the microcirculatory domains of the coronary circulation and the myocardium. New findings about the development and progression of coronary atherosclerosis have changed the clinical landscape. After a nearly 50-year ischemia-centric paradigm of coronary stenosis, growing evidence indicates that coronary atherosclerosis and its features are both diagnostic and therapeutic targets beyond obstructive CAD. Taken together, these factors have shifted the clinicians' focus from the functional evaluation of coronary ischemia to the anatomic burden of disease. Research over the past decades has strengthened the case for prevention and optimal medical therapy as central interventions in patients with CCS. Even though functional capacity has clear prognostic implications, it does not include the evaluation of non-obstructive lesions, plaque burden or additional risk-modifying factors beyond epicardial coronary stenosis-driven ischemia. The recommended first-line diagnostic tests for CCS now include coronary computed tomographic angiography, an increasingly used anatomic imaging modality capable of detecting not only obstructive but also non-obstructive coronary plaques that may be missed with stress testing. This non-invasive anatomical modality improves risk assessment and potentially allows for the appropriate allocation of preventive therapies. Initial invasive strategies cannot improve mortality or the risk of myocardial infarction. Emphasis should be placed on optimizing the control of risk factors through preventive measures, and invasive strategies should be reserved for highly selected patients with refractory symptoms, high ischemic burden, high-risk anatomies, and hemodynamically significant lesions. These guidelines provide current evidence-based diagnosis and treatment recommendations. However, the guidelines are not mandatory, and members of the Task Force fully realize that the treatment of CCS should be individualized to address each patient's circumstances. Ultimately, the decision of healthcare professionals is most important in clinical practice.
Collapse
Affiliation(s)
- Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Chern-En Chiang
- General Clinical Research Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital; College of Medicine, National Cheng Kung University, Tainan
| | - Yen-Wen Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
| | - Wen-Lieng Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital; College of Medicine, National Cheng Kung University, Tainan
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Christian Hospital, Yunlin
| | - Chun-Hung Su
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Hung-Ju Lin
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
| | - Ta-Chen Su
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine, Taipei
| | - Tsun-Jui Liu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Po-Chao Hsu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan
| | - Hsu-Lung Jen
- Division of Cardiology, Cheng Hsin Rehabilitation Medical Center, Taipei
| | - Po-Lin Lin
- Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Feng-You Ko
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Wen-Jone Chen
- Division of Cardiology, Department of Internal Medicine, Min Sheng General Hospital, Taoyuan
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
28
|
Cantoni V, Green R, D'Antonio A, Cuocolo A. Dynamic CZT-SPECT in coronary artery disease: Where are we now? J Nucl Cardiol 2022; 29:1698-1701. [PMID: 34350552 DOI: 10.1007/s12350-021-02752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Valeria Cantoni
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Roberta Green
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
29
|
Yamamoto A, Nagao M, Ando K, Nakao R, Matsuo Y, Sakai A, Momose M, Kaneko K, Hagiwara N, Sakai S. First Validation of Myocardial Flow Reserve Derived from Dynamic 99mTc-Sestamibi CZT-SPECT Camera Compared with 13N-Ammonia PET. Int Heart J 2022; 63:202-209. [PMID: 35354742 DOI: 10.1536/ihj.21-487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
13N-ammonia positron emission tomography (NH3-PET) can evaluate myocardial blood flow (MBF) at rest, stress, and myocardial flow reserve (MFR) as well as the ratio of MBF at stress to that at rest. MFR is useful in predicting the prognoses of patients with various heart diseases. Cadmium-zinc-telluride single photon emission computed tomography (CZT-SPECT) enables us to acquire dynamic images of radiotracer kinetics and measure original MBF and MFR using 99mTc-sestamibi. This study aimed to investigate the utility of CZT-SPECT for quantitative assessment of MBF compared to NH3-PET. We validated the correlation of MBF and MFR between CZT-SPECT and NH3-PET. Fourteen patients using one-day rest/stress CZT-SPECT, D-SPECT followed by NH3-PET within 1 month were enrolled and analyzed prospectively. The reproducibility of the MBF and MFR obtained with these two methods was examined using Spearman's correlation coefficient and Bland-Altman plot analysis. The diagnostic value of D-SPECT for abnormal MFR defined using NH3-PET results as MFR < 2.0 was assessed using receiver-operating characteristic (ROC) analysis. The median duration between D-SPECT and NH3-PET was 20 days. Although MBF was overestimated by D-SPECT compared to NH3-PET at high value (mean difference, 0.43 [0.34-0.53]), MBF and MFR were correlated with the two modalities (MBF: r = 0.71, P < 0.0001, MFR: r = 0.60, P < 0.0001). The ROC curve analysis demonstrated a cutoff of 1.6 for detecting abnormal MFR with D-SPECT (sensitivity, 68%; specificity, 91%; AUC, 0.75). MBF and MFR obtained using D-SPECT and NH3-PET had a good correlation, suggesting that the quantitative MFR evaluation by CZT-SPECT may help understand the trend of NH3-PET MFR.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Department of Cardiology, Tokyo Women's Medical University.,Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Michinobu Nagao
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Kiyoe Ando
- Department of Cardiology, Tokyo Women's Medical University
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University
| | - Yuka Matsuo
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University
| | - Mitsuru Momose
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Koichiro Kaneko
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | | | - Shuji Sakai
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| |
Collapse
|
30
|
Baggiano A, Italiano G, Guglielmo M, Fusini L, Guaricci AI, Maragna R, Giacari CM, Mushtaq S, Conte E, Annoni AD, Formenti A, Mancini ME, Andreini D, Rabbat M, Pepi M, Pontone G. Changing Paradigms in the Diagnosis of Ischemic Heart Disease by Multimodality Imaging. J Clin Med 2022; 11:jcm11030477. [PMID: 35159929 PMCID: PMC8836710 DOI: 10.3390/jcm11030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Coronary artery disease (CAD) represents the most common cardiovascular disease, with high morbidity and mortality. Historically patients with chest pain of suspected coronary origin have been assessed with functional tests, capable to detect haemodynamic consequences of coronary obstructions through depiction of electrocardiographic changes, myocardial perfusion defects or regional wall motion abnormalities under stress condition. Stress echocardiography (SE), single-photon emission computed tomography (SPECT), positron emission tomography (PET) and cardiovascular magnetic resonance (CMR) represent the functional techniques currently available, and technical developments contributed to increased diagnostic performance of these techniques. More recently, cardiac computed tomography angiography (cCTA) has been developed as a non-invasive anatomical test for a direct visualisation of coronary vessels and detailed description of atherosclerotic burden. Cardiovascular imaging techniques have dramatically enhanced our knowledge regarding physiological aspects and myocardial implications of CAD. Recently, after the publication of important trials, international guidelines recognised these changes, updating indications and level of recommendations. This review aims to summarise current standards with main novelties and specific limitations, and a diagnostic algorithm for up-to-date clinical management is also proposed.
Collapse
Affiliation(s)
- Andrea Baggiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Gianpiero Italiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Marco Guglielmo
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Laura Fusini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari, 70124 Bari, Italy;
| | - Riccardo Maragna
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Carlo Maria Giacari
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Saima Mushtaq
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Edoardo Conte
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Daniele Annoni
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Alberto Formenti
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Maria Elisabetta Mancini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Daniele Andreini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Mark Rabbat
- Division of Cardiology, Department of Medicine and Radiology, Loyola University of Chicago, Chicago, IL 60660, USA;
- Division of Cardiology, Department of Medicine, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Mauro Pepi
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Correspondence: ; Tel.: +39-02-5800-2574; Fax: +39-02-5800-2231
| |
Collapse
|
31
|
Molecular Imaging of Vulnerable Coronary Plaque with Radiolabeled Somatostatin Receptors (SSTR). J Clin Med 2021; 10:jcm10235515. [PMID: 34884218 PMCID: PMC8658082 DOI: 10.3390/jcm10235515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is responsible for the majority of heart attacks and is characterized by several modifications of the arterial wall including an inflammatory reaction. The silent course of atherosclerosis has made it necessary to develop predictors of disease complications before symptomatic lesions occur. Vulnerable to rupture atherosclerotic plaques are the target for molecular imaging. To this aim, different radiopharmaceuticals for PET/CT have emerged for the identification of high-risk plaques, with high specificity for the identification of the cellular components and pathophysiological status of plaques. By targeting specific receptors on activated macrophages in high-risk plaques, radiolabelled somatostatin analogues such as 68Ga-DOTA-TOC, TATE,0 or NOC have shown high relevance to detect vulnerable, atherosclerotic plaques. This PET radiopharmaceutical has been tested in several pre-clinical and clinical studies, as reviewed here, showing an important correlation with other risk factors.
Collapse
|