1
|
Kwiecinski J. Role of 18F-sodium fluoride positron emission tomography in imaging atherosclerosis. J Nucl Cardiol 2024; 35:101845. [PMID: 38479575 DOI: 10.1016/j.nuclcard.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Atherosclerosis involving vascular beds across the human body remains the leading cause of death worldwide. Coronary and peripheral artery disease, which are almost universally a result of atherosclerotic plaque, can manifest clinically as myocardial infarctions, ischemic stroke, or acute lower-limb ischemia. Beyond imaging myocardial perfusion and blood-flow, nuclear imaging has the potential to depict the activity of the processes that are directly implicated in the atherosclerotic plaque progression and rupture. Out of several tested tracers to date, the literature is most advanced for 18F-sodium fluoride positron emission tomography. In this review, we present the latest data in the field of atherosclerotic 18F-sodium fluoride positron emission tomography imaging, discuss the advantages and limitation of the techniques, and highlight the aspects that require further research in the future.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland.
| |
Collapse
|
2
|
Blanchard I, Vootukuru N, Bhattaru A, Patil S, Rojulpote C. PET Radiotracers in Atherosclerosis: A Review. Curr Probl Cardiol 2023; 48:101925. [PMID: 37392979 DOI: 10.1016/j.cpcardiol.2023.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Traditional atherosclerosis imaging modalities are limited to late stages of disease, prior to which patients are frequently asymptomatic. Positron emission tomography (PET) imaging allows for the visualization of metabolic processes underscoring disease progression via radioactive tracer, allowing earlier-stage disease to be identified. 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) uptake largely reflects the metabolic activity of macrophages, but is unspecific and limited in its utility. By detecting areas of microcalcification, 18F-Sodium Fluoride (18F-NaF) uptake also provides insight into atherosclerosis pathogenesis. Gallium-68 DOTA-0-Tyr3-Octreotate (68Ga-DOTATATE) PET has also shown potential in identifying vulnerable atherosclerotic plaques with high somatostatin receptor expression. Finally, 11-carbon (11C)-choline and 18F-fluoromethylcholine (FMCH) tracers may identify high-risk atherosclerotic plaques by detecting increased choline metabolism. Together, these radiotracers quantify disease burden, assess treatment efficacy, and stratify risk for adverse cardiac events.
Collapse
Affiliation(s)
| | - Nishita Vootukuru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Abhijit Bhattaru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ; Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Chaitanya Rojulpote
- Department of Radiology, University of Pennsylvania, Philadelphia, PA; Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA.
| |
Collapse
|
3
|
Kwiecinski J. Novel PET Applications and Radiotracers for Imaging Cardiovascular Pathophysiology. Cardiol Clin 2023; 41:129-139. [PMID: 37003671 DOI: 10.1016/j.ccl.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PET allows the assessment of cardiovascular pathophysiology across a wide range of cardiovascular conditions. By imaging processes directly involved in disease progression and adverse events, such as inflammation and developing calcifications (microcalcifications), PET can not only enhance our understanding of cardiovascular disease, but also, as shown for 18F-sodium fluoride, has the potential to predict hard endpoints. In this review, the recent advances in disease activity assessment with cardiovascular PET, which provide hope that this promising technology could be leveraged in the clinical setting, shall be discussed.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, KKiAI, Institute of Cardiology, Alpejska 42, Warsaw 04-628, Poland.
| |
Collapse
|
4
|
NaF-PET Imaging of Atherosclerosis Burden. J Imaging 2023; 9:jimaging9020031. [PMID: 36826950 PMCID: PMC9966512 DOI: 10.3390/jimaging9020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The method of 18F-sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) of atherosclerosis was introduced 12 years ago. This approach is particularly interesting because it demonstrates microcalcification as an incipient sign of atherosclerosis before the development of arterial wall macrocalcification detectable by CT. However, this method has not yet found its place in the clinical routine. The more exact association between NaF uptake and future arterial calcification is not fully understood, and it remains unclear to what extent NaF-PET may replace or significantly improve clinical cardiovascular risk scoring. The first 10 years of publications in the field were characterized by heterogeneity at multiple levels, and it is not clear how the method may contribute to triage and management of patients with atherosclerosis, including monitoring effects of anti-atherosclerosis intervention. The present review summarizes findings from the recent 2¾ years including the ability of NaF-PET imaging to assess disease progress and evaluate response to treatment. Despite valuable new information, pertinent questions remain unanswered, not least due to a pronounced lack of standardization within the field and of well-designed long-term studies illuminating the natural history of atherosclerosis and effects of intervention.
Collapse
|
5
|
Huang JY, Lin YH, Hung CL, Chen WP, Tamaki N, Bax JJ, Morris DA, Korosoglou G, Wu YW. Editorial: Atherosclerosis and functional imaging. Front Cardiovasc Med 2022; 9:1053100. [PMID: 36561766 PMCID: PMC9767462 DOI: 10.3389/fcvm.2022.1053100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jei-Yie Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Lieh Hung
- Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jeroen J. Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniel A. Morris
- Department of Internal Medicine and Cardiology, Charité University Hospital, Berlin, Germany
| | - Grigorios Korosoglou
- Department of Cardiology and Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany
| | - Yen-Wen Wu
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,*Correspondence: Yen-Wen Wu
| |
Collapse
|
6
|
Kwiecinski J. Imaging coronary and aortic microcalcification activity with 18F-sodium fluoride. J Nucl Cardiol 2022; 29:3366-3368. [PMID: 35562638 DOI: 10.1007/s12350-022-02992-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland.
| |
Collapse
|