1
|
Shen C, Zuo Q, Shao Z, Lin Y, Chen S. Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). Int J Mol Med 2025; 55:86. [PMID: 40183403 PMCID: PMC12005369 DOI: 10.3892/ijmm.2025.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Muscarinic acetylcholine (ACh) receptors (also known as M receptors) are widely distributed in all organs and tissues of the body, mainly playing a role in cholinergic nerve conduction. There are five known subtypes of muscarinic ACh receptors, but their pharmacological mechanisms of action on myocardial function have remained to be clearly defined. Functional myocardial diseases and myocardial injuries, such as arrhythmia, myocardial ischemia, myocarditis and myocardial fibrosis, may be affected by muscarinic ACh receptors. This article reviews the research progress of the regulation of myocardial function by muscarinic ACh receptors and related diseases, with the aim of developing better strategies and providing references for further revealing and clarifying the signal transduction and mechanisms of muscarinic ACh receptors in cardiomyocytes, and finding potential myocardial protective drugs that act on muscarinic ACh receptors.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qiang Zuo
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Zhengbin Shao
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
| |
Collapse
|
2
|
Seshadri H, Gunasekaran D, Mohammad A, Rachoori S, Rajakumar HK. Myocardial ischemia in nonobstructive coronary arteries: A review of diagnostic dilemmas, current perspectives, and emerging therapeutic innovations. World J Cardiol 2025; 17:106541. [DOI: 10.4330/wjc.v17.i5.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025] Open
Abstract
Myocardial infarction with nonobstructive coronary arteries is a unique presentation of acute coronary syndrome occurring in patients without significant coronary artery disease. Its pathophysiology involves atherosclerotic and nonatherosclerotic mechanisms such as plaque erosion, coronary microvascular dysfunction, vasospasm, spontaneous coronary artery dissection, autoimmune and inflammatory diseases, and myocardial oxygen supply-demand imbalance. A systematic approach to diagnosis is needed due to the diverse range of underlying causes. Cardiac troponins confirm the myocardial injury and coronary angiography rules out significant obstruction. Cardiac magnetic resonance imaging differentiates ischemic from nonischemic causes, and additional investigations, such as intravascular ultrasound, optical coherence tomography, and provocative testing, play a role in identifying the etiology to guide management strategies. Atherosclerotic cases require antiplatelet therapy and statins, vasospastic cases respond to calcium channel blockers, spontaneous coronary artery dissection is typically managed conservatively, and coronary microvascular dysfunction may require vasodilators. Lifestyle modifications and cardiac rehabilitation are essential for improving outcomes. The prognosis of patients experiencing recurrent events despite treatment is uncertain, but long-term outcomes depend on the etiology, highlighting the need for personalized management. Future research should focus on refining diagnostic protocols and identifying optimal therapeutic strategies. Randomized controlled trials are necessary to establish evidence-based treatments for different subtypes of myocardial infarction with nonobstructive coronary arteries.
Collapse
Affiliation(s)
- Hariharan Seshadri
- Institute of Internal Medicine, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai 600003, Tamil Nadu, India
| | - Dhaiyanitha Gunasekaran
- Department of General Surgery, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | | | - Srinivas Rachoori
- Department of General Surgery, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Hamrish Kumar Rajakumar
- Department of General Surgery, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| |
Collapse
|
3
|
Tang N, Li KM, Li HR, Zhang QD, Hao J, Qi CM. Advances in the diagnosis and management of post-percutaneous coronary intervention coronary microvascular dysfunction: Insights into pathophysiology and metabolic risk interactions. World J Cardiol 2025; 17:103950. [DOI: 10.4330/wjc.v17.i2.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Percutaneous coronary intervention (PCI), as an essential treatment for coronary artery disease, has significantly improved the prognosis of patients with large coronary artery lesions. However, some patients continue to experience myocardial ischemic symptoms post-procedure, largely due to coronary microvascular dysfunction (CMD). The pathophysiological mechanisms of CMD are complex and involve endothelial dysfunction, microvascular remodeling, reperfusion injury, and metabolic abnormalities. Moreover, components of metabolic syndrome, including obesity, hyperglycemia, hypertension, and dyslipidemia, exacerbate the occurrence and progression of CMD through multiple pathways. This review systematically summarizes the latest research advancements in CMD after PCI, including its pathogenesis, diagnostic techniques, management strategies, and future research directions. For diagnosis, invasive techniques such as coronary flow reserve and the index of microcirculatory resistance, as well as non-invasive imaging modalities (positron emission tomography and cardiac magnetic resonance), provide tools for early CMD detection. In terms of management, a multi-level intervention strategy is emphasized, incorporating lifestyle modifications (diet, exercise, and weight control), pharmacotherapy (vasodilators, hypoglycemic agents, statins, and metabolic modulators), traditional Chinese medicine, and specialized treatments (enhanced external counterpulsation, metabolic surgery, and lipoprotein apheresis). However, challenges remain in CMD treatment, including limitations in diagnostic tools and the lack of personalized treatment strategies. Future research should focus on the complex interactions between CMD and metabolic risks, aiming to optimize diagnostic and therapeutic strategies to improve the long-term prognosis of patients post-PCI.
Collapse
Affiliation(s)
- Nan Tang
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Kang-Ming Li
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Hao-Ran Li
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Qing-Dui Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Ji Hao
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Chun-Mei Qi
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
4
|
Paraskevaidis I, Kourek C, Tsougos E. Chronic Coronary Artery Disease: Wall Disease vs. Lumenopathy. Biomolecules 2025; 15:201. [PMID: 40001504 PMCID: PMC11852618 DOI: 10.3390/biom15020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Acute and chronic coronary artery disease (CAD) are interconnected, representing two facets of the same condition. Chronic CAD exhibits a dynamic nature, manifesting as stable or acute ischemia, or both. Myocardial ischemia can be transient and reversible. The genesis of CAD involves diverse anatomical and functional mechanisms, including endothelial dysfunction, arteriolar remodeling, capillary rarefaction, and perivascular fibrosis, though no single factor explains its heterogeneity. Chronic CAD is often stable but may present as symptomatic or asymptomatic (e.g., in diabetes) and affect various coronary compartments (epicardial or microcirculation). This complexity necessitates a reappraisal of our approach, as pathophysiological mechanisms vary and often overlap. A comprehensive exploration of these mechanisms using advanced diagnostic techniques can aid in identifying the dynamic processes underlying CAD. The disease may present as obstructive or non-obstructive, stable or unstable, underscoring its diversity. The primary source of CAD lies in the arterial wall, emphasizing the need for research on its components, such as the endothelium and vascular smooth muscle cells, and factors disrupting arterial homeostasis. Shifting focus from arterial luminal status to the arterial wall can provide insights into the genesis of atheromatous plaques, enabling earlier interventions to prevent their development and progression.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
5
|
Dimitriadis K, Theofilis P, Koutsopoulos G, Pyrpyris N, Beneki E, Tatakis F, Tsioufis P, Chrysohoou C, Fragkoulis C, Tsioufis K. The role of coronary microcirculation in heart failure with preserved ejection fraction: An unceasing odyssey. Heart Fail Rev 2025; 30:75-88. [PMID: 39358622 DOI: 10.1007/s10741-024-10445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents an entity with complex pathophysiologic pathways, among which coronary microvascular dysfunction (CMD) is believed to be an important orchestrator. Research in the field of CMD has highlighted impaired vasoreactivity, capillary rarefaction, and inflammation as potential mediators of its development. CMD can be diagnosed via several noninvasive methods including transthoracic echocardiography, cardiac magnetic resonance, and positron emission tomography. Moreover, invasive methods such as coronary flow reserve and index of microcirculatory resistance are commonly employed in the assessment of CMD. As far as the association between CMD and HFpEF is concerned, numerous studies have highlighted the coexistence of CMD in the majority of HFpEF patients. Additionally, patients affected by both conditions may be facing an adverse prognosis. Finally, there is limited evidence suggesting a beneficial effect of renin-angiotensin-aldosterone system blockers, ranolazine, and sodium-glucose cotransporter-2 inhibitors in CMD, with further evidence being awaited regarding the impact of other pharmacotherapies such as anti-inflammatory agents.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece.
| | - Panagiotis Theofilis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Georgios Koutsopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| |
Collapse
|
6
|
Shetrit A, Freund O, Banai A, Amar Shamir R, Avivi I, Zornitzki L, Ben-Shoshan J, Szekely Y, Arbel Y, Bazan S, Halkin A, Banai S, Konigstein M. Coronary microvascular dysfunction in patients with Takotsubo syndrome. Heart Lung 2024; 68:46-51. [PMID: 38909428 DOI: 10.1016/j.hrtlng.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The pathophysiology of Takotsubo syndrome (TTS) remains incompletely understood. While coronary microvascular dysfunction (CMD) is a potential pathophysiologic mechanism, evidence is limited. OBJECTIVES We sought to evaluate CMD in patients with TTS. METHODS Consecutive patients diagnosed with TTS were included and underwent coronary angiography with invasive microvascular function evaluation, including fractional flow reserve, Coronary Flow Reserve (CFR), Index of Microcirculatory Resistance (IMR), and Resistive Reserve Ratio (RRR). Patients had an echocardiography evaluation during their index admission and at approximately 6 weeks. RESULTS Thirty patients were included (mean age 74 ±9, 90 % female). Twenty-five patients (83 %) had at least one abnormal coronary microvascular function parameter. Abnormal parameters included CFR<2.5 in 20 patients (67 %), IMR>25 in 18 patients (60 %), and RRR<3.5 in 25 (83 %). Longer time from symptoms to angiography correlated with a higher CFR (r = 0.51, P<0.01), and had an area under the receiver operating characteristic curve of 0.793 (95 % CI 0.60-0.98) for pathologic CFR. Patients with emotional trigger had a lower rate of pathologic IMR compared with non-emotional trigger (36 % vs 81 %, p = 0.01). Follow up echocardiography performed at a median of 1.5 months (IQR 1.15-6) showed an improvement in left ventricular ejection fraction for all patients (from mean of 40 % to 57 %). CONCLUSION CMD was present in most patients with TTS. The role of microvascular function in TTS may vary according to the clinical presentation and RRR may be more sensitive for the diagnosis of CMD in TTS.
Collapse
Affiliation(s)
- Aviel Shetrit
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Ophir Freund
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel.
| | - Ariel Banai
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Reut Amar Shamir
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Ido Avivi
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Lior Zornitzki
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Jeremy Ben-Shoshan
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Yishay Szekely
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Yaron Arbel
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Shmuel Bazan
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Amir Halkin
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Shmuel Banai
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| | - Maayan Konigstein
- Departments of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with Tel Aviv School of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, Israel
| |
Collapse
|
7
|
Pasupathy S, Tavella R, Zeitz C, Edwards S, Worthley M, Arstall M, Beltrame JF. Randomised Placebo-Controlled Pilot Trial Evaluating the Anti-Anginal Efficacy of Ticagrelor in Patients with Angina with Nonobstructive Coronary Arteries and Coronary Slow Flow Phenomenon. J Clin Med 2024; 13:5235. [PMID: 39274447 PMCID: PMC11395883 DOI: 10.3390/jcm13175235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: The coronary slow flow phenomenon (CSFP) is an angiographic finding characterised by the delayed passage of contrast through the coronary arteries, despite the absence of obstructive coronary artery disease (defined as less than 50% narrowing of the vessel lumen). Patients with the CSFP experience recurrent angina, for which there are limited evidence-based therapies. Ticagrelor may serve as an effective anti-anginal therapy for these patients by increasing adenosine levels, which could alleviate coronary microvascular dysfunction and its associated angina due to its vasodilatory properties. This study aimed to determine the anti-anginal efficacy of ticagrelor 90 mg taken twice daily on spontaneous angina episodes in patients with refractory angina (i.e., episodes ≥3/week despite two anti-anginals) and documented CSFP. Methods: In a randomised, double-blind, placebo-controlled, cross-over trial, the anti-anginal efficacy of a 4-week ticagrelor therapy regimen was evaluated in 20 patients with refractory angina (mean age 61.5 ± 10.5 years; 40% women) who had documented slow coronary flow. The primary endpoint was the frequency of angina episodes, recorded using an angina diary. Secondary endpoints included the duration and severity of angina episodes, consumption of short-acting nitrates, and health status evaluations using the Seattle Angina Questionnaire (SAQ) and the Short Form-36 (SF-36) indices. Results: During the four weeks of therapy, ticagrelor did not significantly improve angina symptoms compared to the placebo (placebo 25.7 (16.7)) vs. ticagrelor 19.8 (18.1), p > 0.05). Furthermore, it did not impact other patient-related outcome measures, including angina severity, duration, frequency of prolonged angina episodes, nitrate consumption, or the SAQ/SF-36 health outcome indices. No serious adverse events related to the study drug were observed. Conclusions: In patients with documented CSFP who were unresponsive to standard anti-anginal therapy, ticagrelor did not reduce the frequency of spontaneous angina episodes or the consumption of nitrates. Further confirmation of the potential benefits of this therapy may be obtained through a larger clinical trial.
Collapse
Affiliation(s)
- Sivabaskari Pasupathy
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
- Flinders University, Adelaide, SA 5042, Australia
| | - Rosanna Tavella
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Christopher Zeitz
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Suzanne Edwards
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Matthew Worthley
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
| | - Margaret Arstall
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia
| | - John F Beltrame
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, Adelaide, SA 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| |
Collapse
|
8
|
Case BC, Merdler I, Medranda GA, Zhang C, Ozturk ST, Sawant V, Garcia-Garcia HM, Satler LF, Ben-Dor I, Hashim HD, Waksman R. Coronary Microvascular Disease Registry (CMDR): Study design and rationale. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 66:63-67. [PMID: 38631936 DOI: 10.1016/j.carrev.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a prevalent condition among patients with cardiovascular risk factors, leading to a reduced quality of life and an increased risk of major adverse cardiovascular events. Novel invasive techniques have emerged to more accurately diagnose CMD. However, CMD's natural history remains poorly understood due to limited data. To address this knowledge gap, the Coronary Microvascular Disease Registry (CMDR) was established with the primary aim of standardizing comprehensive coronary functional testing and understanding of CMD. DESIGN CMDR is a prospective, multicenter registry enrolling an unlimited number of consecutive subjects who undergo comprehensive invasive hemodynamic assessment of the entire coronary arterial vasculature. Patients undergoing acetylcholine provocation test for coronary vasospasm will also be included. Follow-up assessments will be conducted at 30 days and annually for up to 5 years. The primary endpoint is Canadian Cardiovascular Society angina grade over time. Secondary endpoints, including all-cause mortality, cardiovascular death, acute myocardial infarction, stroke, hospitalizations, medication changes, and subsequent coronary interventions, will be analyzed to establish long-term safety and clinical outcomes in patients undergoing invasive CMD assessment. SUMMARY CMDR aims to characterize the clinical and physiologic profile of patients undergoing comprehensive invasive coronary functional testing, simultaneously providing crucial longitudinal information on the natural history and outcomes of these patients. This will shed light on CMD's course and clinical implications, which, in turn, holds the potential to significantly improve diagnostic and treatment strategies for CMD patients, ultimately leading to the enhancement of their overall prognosis and quality of life. CLINICAL TRIAL REGISTRATION clinicaltrials.gov, NCT05960474.
Collapse
Affiliation(s)
- Brian C Case
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Ilan Merdler
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Giorgio A Medranda
- Division of Cardiology, Department of Medicine, NYU Langone Hospital - Long Island, Mineola, NY, USA
| | - Cheng Zhang
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Sevket Tolga Ozturk
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Vaishnavi Sawant
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Lowell F Satler
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Itsik Ben-Dor
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Hayder D Hashim
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA.
| |
Collapse
|
9
|
Soh RYH, Low TT, Sia CH, Kong WKF, Yeo TC, Loh PH, Poh KK. Ischaemia with no obstructive coronary arteries: a review with focus on the Asian population. Singapore Med J 2024; 65:380-388. [PMID: 38973187 PMCID: PMC11321541 DOI: 10.4103/singaporemedj.smj-2023-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/02/2023] [Indexed: 07/09/2024]
Abstract
ABSTRACT Ischaemia with no obstructive coronary arteries (INOCA) has been a diagnostic and therapeutic challenge for decades. Several studies have demonstrated that INOCA is associated with an increased risk of death, adverse cardiovascular events, poor quality of life and high healthcare cost. Although there is increasing recognition of this entity in the Western population, in the Asian population, INOCA remains elusive and its prevalence uncertain. Despite its prognostic significance, diagnosis of INOCA is often delayed. In this review, we identified the multiple barriers to its diagnosis and management, and proposed strategies to overcome them.
Collapse
Affiliation(s)
- Rodney Yu-Hang Soh
- Department of Cardiology, National University Heart Centre Singapore, Singapore
| | - Ting-Ting Low
- Department of Cardiology, National University Heart Centre Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - William Kok-Fai Kong
- Department of Cardiology, National University Heart Centre Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tiong-Cheng Yeo
- Department of Cardiology, National University Heart Centre Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poay-Huan Loh
- Department of Cardiology, National University Heart Centre Singapore, Singapore
- Division of Cardiology, Department of Medicine, Ng Teng Fong General Hospital, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Ágoston A, Dorj A, Üveges Á, Tar B, Szabó GT, Barta J, Szűk T, Kest M, Méhész R, Komócsi A, Czuriga D, Csippa B, Piróth Z, Barbato E, Kőszegi Z. The pressure-derived microvascular resistance reserve and its correlation to Doppler MRR measurement-a proof of concept study. Front Cardiovasc Med 2024; 11:1322161. [PMID: 38887446 PMCID: PMC11180812 DOI: 10.3389/fcvm.2024.1322161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Background Microvascular resistance reserve (MRR) is a recently introduced specific index of coronary microcirculation. MRR calculation can utilize parameters deriving from coronary flow reserve (CFR) assessment, provided that intracoronary pressure data are also available. The previously proposed pressure-bounded CFR (CFRpb) defines the possible CFR interval on the basis of resting and hyperemic pressure gradients in the epicardial vessel, however, its correlation to the Doppler wire measurement was reported to be rather poor without the correction for hydrostatic pressure. Purpose We aimed to determine the pressure-bounded coronary MRR interval with hydrostatic pressure correction according to the previously established equations of CFRpb adapted for the MRR concept. Furthermore, we also aimed to design a prediction model using the actual MRR value within the pressure-bounded interval and validate the results against the gold-standard Doppler wire technique. Methods Hydrostatic pressure between the tip of the catheter and the sensor of the pressure wire was calculated by height difference measurement from a lateral angiographic view. In the derivation cohort the pressure-bounded MRR interval (between MRRpbmin and MRRpbmax) was determined solely from hydrostatic pressure-corrected intracoronary pressure data. The actual MRR was calculated by simple hemodynamic equations incorporating the anatomical data of the three-dimensionally reconstructed coronary artery (MRRp-3D). These results were analyzed by regression analyses to find relations between the MRRpb bounds and the actual MRRp-3D. Results In the derivation cohort of 23 measurements, linear regression analysis showed a tight relation between MRRpbmax and MRRp-3D (r 2 = 0.74, p < 0.0001). Using this relation (MRRp-3D = 1.04 + 0.51 × MRRpbmax), the linear prediction of the MRR was tested in the validation cohort of 19 measurements against the gold standard Doppler wire technique. A significant correlation was found between the linearly predicted and the measured values (r = 0.54, p = 0.01). If the area stenosis (AS%) was included to a quadratic prediction model, the correlation was improved (r = 0.63, p = 0.004). Conclusions The MRR can be predicted reliably to assess microvascular function by our simple model. After the correction for hydrostatic pressure error, the pressure data during routine FFR measurement provides a simultaneous physiological assessment of the macro- and microvasculature.
Collapse
Affiliation(s)
- András Ágoston
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Cardiology, Szabolcs—Szatmár—Bereg Country Hospitals and University Teaching Hospital, Nyíregyháza, Hungary
| | - Azzaya Dorj
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Áron Üveges
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Cardiology, Szabolcs—Szatmár—Bereg Country Hospitals and University Teaching Hospital, Nyíregyháza, Hungary
| | - Balázs Tar
- Department of Cardiology, Szabolcs—Szatmár—Bereg Country Hospitals and University Teaching Hospital, Nyíregyháza, Hungary
| | - Gábor Tamás Szabó
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Barta
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Szűk
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Michael Kest
- Department of Cardiology, Szabolcs—Szatmár—Bereg Country Hospitals and University Teaching Hospital, Nyíregyháza, Hungary
| | - Réka Méhész
- Department of Cardiology, Szabolcs—Szatmár—Bereg Country Hospitals and University Teaching Hospital, Nyíregyháza, Hungary
| | | | - Dániel Czuriga
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Benjámin Csippa
- Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsolt Piróth
- Gottsegen National Cardiovascular Center, Budapest, Hungary
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Zsolt Kőszegi
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Cardiology, Szabolcs—Szatmár—Bereg Country Hospitals and University Teaching Hospital, Nyíregyháza, Hungary
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Merdler I, Wallace R, Banerjee A, Medranda GA, Reddy P, Cellamare M, Zhang C, Ozturk ST, Sawant V, Lopez K, Ben-Dor I, Waksman R, Case BC, Hashim HD. Coronary microvascular dysfunction assessment: A comparative analysis of procedural aspects. Catheter Cardiovasc Interv 2024; 103:703-709. [PMID: 38520176 DOI: 10.1002/ccd.30990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Full adoption of coronary microvascular dysfunction (CMD) assessment faces challenges due to its invasive nature and concerns about prolonged procedure time and increased contrast and/or radiation exposure. We compared procedural aspects of CMD invasive assessment to diagnostic left heart catheterization (DLHC) in patients with chest pain who were not found to have obstructive coronary artery disease. METHODS A total of 227 patients in the Coronary Microvascular Disease Registry were compared to 1592 patients who underwent DLHC from August 2021 to November 2023. The two cohorts were compared using propensity-score matching; primary outcomes were fluoroscopy time and total contrast use. RESULTS The participants' mean age was 64.1 ± 12.6 years. CMD-assessed patients were more likely to be female (66.5% vs. 45.2%, p < 0.001) and have hypertension (80.2% vs. 44.5%, p < 0.001), history of stroke (11.9% vs. 6.3%, p = 0.002), and history of myocardial infarction (20.3% vs. 7.7%, p < 0.001). CMD assessment was safe, without any reported adverse outcomes. A propensity-matched analysis showed that patients who underwent CMD assessment had slightly higher median contrast exposure (50 vs. 40 mL, p < 0.001), and slightly longer fluoroscopy time (6.9 vs. 4.7 min, p < 0.001). However, there was no difference in radiation dose (209.3 vs. 219 mGy, p = 0.58) and overall procedure time (31 vs. 29 min, p = 0.37). CONCLUSION Compared to DLHC, CMD assessment is safe and requires only slightly additional contrast use (10 mL) and slightly longer fluoroscopy time (2 min) without clinical implications. These findings emphasize the favorable safety and feasibility of invasive CMD assessment.
Collapse
Affiliation(s)
- Ilan Merdler
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Ryan Wallace
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Avantika Banerjee
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Giorgio A Medranda
- Division of Cardiology, NYU Langone Hospital-Long Island, Mineola, New York, USA
| | - Pavan Reddy
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Matteo Cellamare
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Cheng Zhang
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Sevket Tolga Ozturk
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Vaishnavi Sawant
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Kassandra Lopez
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Itsik Ben-Dor
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Brian C Case
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Hayder D Hashim
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Ciaramella L, Di Serafino L, Mitrano L, De Rosa ML, Carbone C, Rea FS, Monaco S, Scalamogna M, Cirillo P, Esposito G. Invasive Assessment of Coronary Microcirculation: A State-of-the-Art Review. Diagnostics (Basel) 2023; 14:86. [PMID: 38201395 PMCID: PMC10795746 DOI: 10.3390/diagnostics14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
A significant proportion of patients presenting with signs and symptoms of myocardial ischemia have no "significant" epicardial disease; thereby, the assessment of coronary microcirculation gained an important role in improving diagnosis and guiding therapy. In fact, coronary microvascular dysfunction (CMD) could be found in a large proportion of these patients, supporting both symptoms and signs of myocardial ischemia. However, CMD represents a diagnostic challenge for two main reasons: (1) the small dimension of the coronary microvasculature prevents direct angiographic visualization, and (2) despite the availability of specific diagnostic tools, they remain invasive and underused in the current clinical practice. For these reasons, CMD remains underdiagnosed, and most of the patients remain with no specific treatment and quality-of-life-limiting symptoms. Of note, recent evidence suggests that a "full physiology" approach for the assessment of the whole coronary vasculature may offer a significant benefit in terms of symptom improvement among patients presenting with ischemia and non-obstructive coronary artery disease. We analyze the pathophysiology of coronary microvascular dysfunction, providing the readers with a guide for the invasive assessment of coronary microcirculation, together with the available evidence supporting its use in clinical practice.
Collapse
Affiliation(s)
| | - Luigi Di Serafino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.C.); (L.M.); (M.L.D.R.); (C.C.); (F.S.R.); (S.M.); (M.S.); (P.C.); (G.E.)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zdravkovic M, Popadic V, Klasnja S, Klasnja A, Ivankovic T, Lasica R, Lovic D, Gostiljac D, Vasiljevic Z. Coronary Microvascular Dysfunction and Hypertension: A Bond More Important than We Think. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2149. [PMID: 38138252 PMCID: PMC10744540 DOI: 10.3390/medicina59122149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a clinical entity linked with various risk factors that significantly affect cardiac morbidity and mortality. Hypertension, one of the most important, causes both functional and structural alterations in the microvasculature, promoting the occurrence and progression of microvascular angina. Endothelial dysfunction and capillary rarefaction play the most significant role in the development of CMD among patients with hypertension. CMD is also related to several hypertension-induced morphological and functional changes in the myocardium in the subclinical and early clinical stages, including left ventricular hypertrophy, interstitial myocardial fibrosis, and diastolic dysfunction. This indicates the fact that CMD, especially if associated with hypertension, is a subclinical marker of end-organ damage and heart failure, particularly that with preserved ejection fraction. This is why it is important to search for microvascular angina in every patient with hypertension and chest pain not associated with obstructive coronary artery disease. Several highly sensitive and specific non-invasive and invasive diagnostic modalities have been developed to evaluate the presence and severity of CMD and also to investigate and guide the treatment of additional complications that can affect further prognosis. This comprehensive review provides insight into the main pathophysiological mechanisms of CMD in hypertensive patients, offering an integrated diagnostic approach as well as an overview of currently available therapeutical modalities.
Collapse
Affiliation(s)
- Marija Zdravkovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| | - Viseslav Popadic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Slobodan Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Andrea Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Tatjana Ivankovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Cardiology, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Dragan Lovic
- Clinic for Internal Diseases Inter Medica, 18000 Nis, Serbia;
- School of Medicine, Singidunum University, 18000 Nis, Serbia
| | - Drasko Gostiljac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Zorana Vasiljevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| |
Collapse
|
14
|
Hanyu Y, Hoshino M, Usui E, Sugiyama T, Kanaji Y, Hada M, Nagamine T, Nogami K, Ueno H, Sayama K, Matsuda K, Sakamoto T, Yonetsu T, Sasano T, Kakuta T. Microvascular resistance reserve in the presence of functionally significant epicardial stenosis and changes after revascularization. Physiol Rep 2023; 11:e15627. [PMID: 36905154 PMCID: PMC10006606 DOI: 10.14814/phy2.15627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
In the presence of functionally significant epicardial lesions, microvascular resistance reserve (MRR) calculation needs incorporation of collateral flow. Coronary fractional flow reserve (FFRcor ) requiring coronary wedge pressure (Pw ), which is an essential part of the true MRR calculation, is reportedly estimated by myocardial FFR (FFRmyo ) not requiring Pw measurement. We sought to find an equation to calculate MRR without the need for Pw . Furthermore, we assessed changes in MRR after percutaneous coronary intervention (PCI). An equation to estimate FFRcor was developed from a cohort of 230 patients who underwent physiological measurements and PCI. Corrected MRR was calculated using this equation and compared with true MRR in 115 patients of the different set of the validation cohort. True MRR was calculated using FFRcor . FFRcor and FFRmyo showed a strong linear relationship (r2 = 0.86) and an equation was FFRcor = 1.36 × FFRmyo - 0.34. This equation provided no significant difference between corrected MRR and true MRR in the validation cohort. Pre-PCI lower coronary flow reserve and higher index of microcirculatory resistance were independent predictors of pre-PCI decreased true MRR. True MRR significantly decreased after PCI. In conclusion, MRR can be accurately corrected using an equation for FFRcor estimation without Pw .
Collapse
Affiliation(s)
- Yoshihiro Hanyu
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Masahiro Hoshino
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Eisuke Usui
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Tomoyo Sugiyama
- Department of Interventional CardiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Yoshihisa Kanaji
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Masahiro Hada
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Tatsuhiro Nagamine
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Kai Nogami
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Hiroki Ueno
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Kodai Sayama
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Kazuki Matsuda
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Tatsuya Sakamoto
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| | - Taishi Yonetsu
- Department of Interventional CardiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuo Sasano
- Department of Cardiovascular MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Tsunekazu Kakuta
- Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalIbarakiJapan
| |
Collapse
|
15
|
Gao J, Meng T, Li M, Du R, Ding J, Li A, Yu S, Li Y, He Q. Global trends and frontiers in research on coronary microvascular dysfunction: a bibliometric analysis from 2002 to 2022. Eur J Med Res 2022; 27:233. [PMID: 36335406 PMCID: PMC9636644 DOI: 10.1186/s40001-022-00869-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a leading cause of ischemic heart disease. Over the past few decades, considerable progress has been made with respect to research on CMD. The present study summarized the current research hotspots and trends on CMD by applying a bibliometric approach. METHODS Relevant publications between 2002 and 2022 were extracted from the Web of Science Core Collection. Visualization network maps of countries, institutions, authors, and co-cited authors were built using VOSviewer. CiteSpace was used for keyword analysis and the construction of a dual-map overlay of journals and a timeline view of co-cited references. RESULTS 1539 CMD-related publications were extracted for bibliometric analysis. The annual publications generally showed an upward trend. The United States of America was the most prolific country, with 515 publications (33.5%). Camici P. G. was the most influential author, whereas the European Heart Journal, Circulation, and Journal of the American College of Cardiology were the most authoritative journals. Research hotspot analysis revealed that endothelial dysfunction as well as reduced nitric oxide production or bioavailability played critical roles in CMD development. Positron emission tomography was the most widely used imaging method for diagnosis. In addition, microvascular angina, hypertrophic cardiomyopathy, and heart failure have attracted much attention as the main clinical implications. Furthermore, international standards for CMD diagnosis and management may be the future research directions. CONCLUSIONS This study offers a comprehensive view about the hotspots and development trends of CMD, which can assist subsequent researchers and guide future directions.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruolin Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anqi Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Yu
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|