1
|
Sheeter DA, Garza S, Park HG, Benhamou LRE, Badi NR, Espinosa EC, Kothapalli KSD, Brenna JT, Powers JT. Unsaturated Fatty Acid Synthesis Is Associated with Worse Survival and Is Differentially Regulated by MYCN and Tumor Suppressor microRNAs in Neuroblastoma. Cancers (Basel) 2024; 16:1590. [PMID: 38672672 PMCID: PMC11048984 DOI: 10.3390/cancers16081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.
Collapse
Affiliation(s)
- Dennis A. Sheeter
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Secilia Garza
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Hui Gyu Park
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Lorraine-Rana E. Benhamou
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Niharika R. Badi
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Erika C. Espinosa
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Kumar S. D. Kothapalli
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - J. Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - John T. Powers
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Misiak D, Hagemann S, Bell JL, Busch B, Lederer M, Bley N, Schulte JH, Hüttelmaier S. The MicroRNA Landscape of MYCN-Amplified Neuroblastoma. Front Oncol 2021; 11:647737. [PMID: 34026620 PMCID: PMC8138323 DOI: 10.3389/fonc.2021.647737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/15/2021] [Indexed: 02/01/2023] Open
Abstract
MYCN gene amplification and upregulated expression are major hallmarks in the progression of high-risk neuroblastoma. MYCN expression and function in modulating gene synthesis in neuroblastoma is controlled at virtually every level, including poorly understood regulation at the post-transcriptional level. MYCN modulates the expression of various microRNAs including the miR-17-92 cluster. MYCN mRNA expression itself is subjected to the control by miRNAs, most prominently the miR-17-92 cluster that balances MYCN expression by feed-back regulation. This homeostasis seems disturbed in neuroblastoma where MYCN upregulation coincides with severely increased expression of the miR-17-92 cluster. In the presented study, we applied high-throughput next generation sequencing to unravel the miRNome in a cohort of 97 neuroblastomas, representing all clinical stages. Aiming to reveal the MYCN-dependent miRNome, we evaluate miRNA expression in MYCN-amplified as well as none amplified tumor samples. In correlation with survival data analysis of differentially expressed miRNAs, we present various putative oncogenic as well as tumor suppressive miRNAs in neuroblastoma. Using microRNA trapping by RNA affinity purification, we provide a comprehensive view of MYCN-regulatory miRNAs in neuroblastoma-derived cells, confirming a pivotal role of the miR-17-92 cluster and moderate association by the let-7 miRNA family. Attempting to decipher how MYCN expression escapes elevated expression of inhibitory miRNAs, we present evidence that RNA-binding proteins like the IGF2 mRNA binding protein 1 reduce miRNA-directed downregulation of MYCN in neuroblastoma. Our findings emphasize the potency of post-transcriptional regulation of MYCN in neuroblastoma and unravel new avenues to pursue inhibition of this potent oncogene.
Collapse
Affiliation(s)
- Danny Misiak
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica L. Bell
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Busch
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Charité Berlin, Berlin, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
3
|
|
4
|
Gao J, Song L, Xia H, Peng L, Wen Z. 6'-O-galloylpaeoniflorin regulates proliferation and metastasis of non-small cell lung cancer through AMPK/miR-299-5p/ATF2 axis. Respir Res 2020; 21:39. [PMID: 32014006 PMCID: PMC6998290 DOI: 10.1186/s12931-020-1277-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background Recent studies have shown 6'-O-galloylpaeoniflorin (GPF), a nature product extracted from the roots of paeoniflorin exerts anti-oxidant and anti-inflammatory activities. However, the effects of GPF on the proliferation and invasion in non-small cell lung cancer (NSCLC) cells have not been clarified. Methods MTT assay was performed to determine the cytotoxicity of GPF treatment on NSCLC cells. Colony formation assay, cell scratch test and transwell assay were performed to determine the proliferation and invasion of NSCLC cells in vitro, respectively. An A549 cell xenograft mouse model was performed to confirm the growth of NSCLC cells in vivo. Western blotting was used to measure the levels of activating transcription factor 2 (ATF2), AMP-activated protein kinase (AMPK) and phosph-AMPK (p-AMPK). Luciferase assay was used to validate the binding of miR-299-5p on the 3' untranslated region (UTR) of ATF2. Results Administration of GPF (50 or 100 μM) was significantly cytotoxic to A549 cells and H1299 cells, as well as inhibited the clonality, invasion and metastasis of NSCLC cells in vitro. GPF treatment also inhibited the tumor growth of NSCLC cell mouse xenografts in vivo. Exotic expression of miR-299-5p significantly inhibited the growth of NSCLC cells in vitro and in vivo. Downregulation of miR-299-5p expression attenuated the inhibition of the proliferation and metastasis of non-small cell lung cancer cells by GPF treatment. miR-299-5p significantly decreased ATF2 mRNA and protein levels in A549 cells (p < 0.05). Overexpression of ATF2 blocked the inhibitory effect of miR-299-5p on the proliferation and invasiveness of A549 cells. Conclusions GPF regulates miR-299-5p/ATF2 axis in A549 cells via the AMPK signalling pathway, thereby inhibiting the proliferation and metastasis of non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Jinying Gao
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Huan Xia
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Liping Peng
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Zhongmei Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
5
|
Roy J, Das B, Jain N, Mallick B. PIWI‐interacting RNA 39980 promotes tumor progression and reduces drug sensitivity in neuroblastoma cells. J Cell Physiol 2019; 235:2286-2299. [DOI: 10.1002/jcp.29136] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jyoti Roy
- Department of Life Science, RNAi and Functional Genomics Lab National Institute of Technology Rourkela Rourkela Odisha India
| | - Basudeb Das
- Department of Life Science, RNAi and Functional Genomics Lab National Institute of Technology Rourkela Rourkela Odisha India
| | - Neha Jain
- Department of Life Science, RNAi and Functional Genomics Lab National Institute of Technology Rourkela Rourkela Odisha India
| | - Bibekanand Mallick
- Department of Life Science, RNAi and Functional Genomics Lab National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
6
|
Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC, Fabbri M. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms. Cancer Res 2018; 79:1151-1164. [PMID: 30541743 DOI: 10.1158/0008-5472.can-18-0779] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022]
Abstract
In neuroblastoma, the interplay between immune cells of the tumor microenvironment and cancer cells contributes to immune escape mechanisms and drug resistance. In this study, we show that natural killer (NK) cell-derived exosomes carrying the tumor suppressor microRNA (miR)-186 exhibit cytotoxicity against MYCN-amplified neuroblastoma cell lines. The cytotoxic potential of these exosomes was partly dependent upon expression of miR-186. miR-186 was downregulated in high-risk neuroblastoma patients, and its low expression represented a poor prognostic factor that directly correlated with NK activation markers (i.e., NKG2D and DNAM-1). Expression of MYCN, AURKA, TGFBR1, and TGFBR2 was directly inhibited by miR-186. Targeted delivery of miR-186 to MYCN-amplified neuroblastoma or NK cells resulted in inhibition of neuroblastoma tumorigenic potential and prevented the TGFβ1-dependent inhibition of NK cells. Altogether, these data support the investigation of a miR-186-containing nanoparticle formulation to prevent tumor growth and TGFβ1-dependent immune escape in high-risk neuroblastoma patients as well as the inclusion of ex vivo-derived NK exosomes as a potential therapeutic option alongside NK cell-based immunotherapy.Significance: These findings highlight the therapeutic potential of NK cell-derived exosomes containing the tumor suppressor miR-186 that inhibits growth, spreading, and TGFβ-dependent immune escape mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Paolo Neviani
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Petra M Wise
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mariam Murtadha
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cathy W Liu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chun-Hua Wu
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ambrose Y Jong
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, USC-Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
7
|
Nowak I, Boratyn E, Durbas M, Horwacik I, Rokita H. Exogenous expression of miRNA-3613-3p causes APAF1 downregulation and affects several proteins involved in apoptosis in BE(2)-C human neuroblastoma cells. Int J Oncol 2018; 53:1787-1799. [PMID: 30066861 DOI: 10.3892/ijo.2018.4509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/02/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non‑coding RNAs involved in post‑transcriptional gene regulation. Furthermore, dysregulation of miRNA expression is an important factor in the pathogenesis of neuroblastoma. Our previous study identified that overexpression of monocyte chemoattractant protein‑induced protein 1 protein led to a significant downregulation of a novel miRNA molecule, miRNA‑3613‑3p. In the present study, the potential involvement of miRNA‑3613‑3p in the cell biology of neuroblastoma was investigated. It was identified that the expression of miRNA‑3613‑3p varies among a range of human neuroblastoma cell lines. As the delineation of the functions of a miRNA requires the identification of its target genes, seven putative mRNAs that may be regulated by miRNA‑3613‑3p were selected. Furthermore, it was identified that overexpression of miRNA‑3613‑3p causes significant downregulation of several genes exhibiting tumor suppressive potential [encoding apoptotic protease‑activating factor 1 (APAF1), Dicer, DNA fragmentation factor subunit β, von Hippel‑Lindau protein and neurofibromin 1] in BE(2)‑C human neuroblastoma cells. APAF1 mRNA was the most significantly decreased transcript in the cells with miRNA‑3613‑3p overexpression. In accordance with the aforementioned results, the downregulation of cleaved caspase-9 and lack of activation of executive caspases in BE(2)‑C cells following miRNA‑3613‑3p overexpression was observed. The results of the present study suggest a potential underlying molecular mechanism of apoptosis inhibition via APAF1 downregulation in human neuroblastoma BE(2)‑C cells with miRNA‑3613‑3p overexpression.
Collapse
Affiliation(s)
- Iwona Nowak
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Elżbieta Boratyn
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Małgorzata Durbas
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Hanna Rokita
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Induction of morphological and functional differentiation of human neuroblastoma cells by miR-124. J Biosci 2018; 42:555-563. [PMID: 29229874 DOI: 10.1007/s12038-017-9714-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumour in children, and differentiation is considered its most appropriate therapy. In this work, we studied effects of miR-124 overexpression on differentiation in M17 cell line as a model of neuroblastoma cancer. Influence of miR-124 overexpression on differentiation in M17 cells was studied. M17 cells were infected with lentivirus that contained miR-124 precursor sequence and followed for 2 weeks to differentiate. Ectopic expression of miR-124 in M17 cells changed the shape of spherical undifferentiated cells to cells with extended neurites that formed neuronal networks. Overexpression of MiR-124 respectively increased the expression level of markers of β-Tubulin III, MAP2, SYN, NF-M and Nestin by 16-, 5-, 4-, 2.3- and 2-folds at the messenger RNA level. MiR-124 overexpression also increased the protein levels of β-Tubulin III and MAP2. Moreover, exogenous expression of miR-124 significantly increased the intracellular calcium in differentiated M17 cells. Since miR-124 is naturally expressed in neuronal cells and is downregulated in neuroblastoma cancer cells, differentiation with this type of microRNA can be a novel treatment for neuroblastoma cancer.
Collapse
|
9
|
MicroRNA-193b-3p represses neuroblastoma cell growth via downregulation of Cyclin D1, MCL-1 and MYCN. Oncotarget 2018; 9:18160-18179. [PMID: 29719597 PMCID: PMC5915064 DOI: 10.18632/oncotarget.24793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/28/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is the most common diagnosed tumor in infants and the second most common extracranial tumor of childhood. The survival rate of patients with high-risk neuroblastoma is still very low despite intensive multimodal treatments. Therefore, new treatment strategies are needed. In recent years, miRNA-based anticancer therapy has received growing attention. Advances in this novel treatment strategy strongly depends on the identification of candidate miRNAs with broad-spectrum antitumor activity. Here, we identify miR-193b as a miRNA with tumor suppressive properties. We show that miR-193b is expressed at low levels in neuroblastoma cell lines and primary tumor samples. Introduction of miR-193b mimics into nine neuroblastoma cell lines with distinct genetic characteristics significantly reduces cell growth in vitro independent of risk factors such as p53 functionality or MYCN amplification. Functionally, miR-193b induces a G1 cell cycle arrest and cell death in neuroblastoma cell lines by reducing the expression of MYCN, Cyclin D1 and MCL-1, three important oncogenes in neuroblastoma of which inhibition has shown promising results in preclinical testing. Therefore, we suggest that miR-193b may represent a new candidate for miRNA-based anticancer therapy in neuroblastoma.
Collapse
|
10
|
Owen J, Crake C, Lee JY, Carugo D, Beguin E, Khrapitchev AA, Browning RJ, Sibson N, Stride E. A versatile method for the preparation of particle-loaded microbubbles for multimodality imaging and targeted drug delivery. Drug Deliv Transl Res 2018; 8:342-356. [PMID: 28299722 PMCID: PMC5830459 DOI: 10.1007/s13346-017-0366-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbubbles are currently in clinical use as ultrasound contrast agents and under active investigation as mediators of ultrasound therapy. To improve the theranostic potential of microbubbles, nanoparticles can be attached to the bubble shell for imaging, targeting and/or enhancement of acoustic response. Existing methods for fabricating particle-loaded bubbles, however, require the use of polymers, oil layers or chemical reactions for particle incorporation; embed/attach the particles that can reduce echogenicity; impair biocompatibility; and/or involve multiple processing steps. Here, we describe a simple method to embed nanoparticles in a phospholipid-coated microbubble formulation that overcomes these limitations. Magnetic nanoparticles are used to demonstrate the method with a range of different microbubble formulations. The size distribution and yield of microbubbles are shown to be unaffected by the addition of the particles. We further show that the microbubbles can be retained against flow using a permanent magnet, can be visualised by both ultrasound and magnetic resonance imaging (MRI) and can be used to transfect SH-SY5Y cells with fluorescent small interfering RNA under the application of a magnetic field and ultrasound field.
Collapse
Affiliation(s)
- Joshua Owen
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Calum Crake
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA
| | - Jeong Yu Lee
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dario Carugo
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Estelle Beguin
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Alexandre A Khrapitchev
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Richard J Browning
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Nicola Sibson
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK.
| |
Collapse
|
11
|
miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget 2018; 7:40314-40328. [PMID: 27259238 PMCID: PMC5130010 DOI: 10.18632/oncotarget.9739] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP that promotes the tumorigenesis and aggressiveness, is highly expressed in gastric cancer. However, the transcriptional regulators of MMP-14 expression in gastric cancer still remain largely unknown. In this study, through mining computational algorithm programs and chromatin immunoprecipitation datasets, we identified adjacent binding sites of myeloid zinc finger 1 (MZF1) and miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that MZF1 directly bound to the MMP-14 promoter to facilitate its nascent transcription and expression in gastric cancer cell lines. In contrast, endogenous miR-337-3p suppressed the MMP-14 expression through recognizing its binding site within MMP-14 promoter. Mechanistically, miR-337-3p repressed the binding of MZF1 to MMP-14 promoter via recruiting Argonaute 2 and inducing repressive chromatin remodeling. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of gastric cancer cells in vitro and in vivo through repressing MZF1-facilitated MMP-14 expression. In clinical specimens and cell lines of gastric cancer, MZF1 was highly expressed and positively correlated with MMP-14 expression. Meanwhile, miR-337-3p was under-expressed and inversely correlated with MMP-14 levels. miR-337-3p was an independent prognostic factor for favorable outcome of gastric cancer, and patients with high MZF1 or MMP-14 expression had lower survival probability. Taken together, these data indicate that miR-337-3p directly binds to the MMP-14 promoter to repress MZF1-facilitatd MMP-14 expression, thus suppressing the progression of gastric cancer.
Collapse
|
12
|
miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1- facilitated MMP-14 expression. Sci Rep 2017; 7:8967. [PMID: 28827574 PMCID: PMC5566321 DOI: 10.1038/s41598-017-09271-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
Recent evidence shows the emerging roles of promoter-targeting endogenous microRNAs (miRNAs) in regulating gene transcription. However, miRNAs affecting the transcription of matrix metalloproteinase 14 (MMP-14) in gastric cancer remain unknown. Herein, through integrative mining of public datasets, we identified the adjacent targeting sites of Yin Yang 1 (YY1) and miRNA-584-3p (miR-584-3p) within MMP-14 promoter. We demonstrated that YY1 directly targeted the MMP-14 promoter to facilitate its expression in gastric cancer cells. In contrast, miR-584-3p recognized its complementary site within MMP-14 promoter to suppress its expression. Mechanistically, miR-584-3p interacted with Argonaute 2 to recruit enhancer of zeste homolog 2 and euchromatic histone lysine methyltransferase 2, resulting in enrichment of repressive epigenetic markers and decreased binding of YY1 to MMP-14 promoter. miR-584-3p inhibited the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cells through repressing YY1-facilitated MMP-14 expression. In clinical gastric cancer tissues, the expression of YY1 and miR-584-3p was positively or negatively correlated with MMP-14 levels. In addition, miR-584-3p and YY1 were independent prognostic factors associated with favorable and unfavorable outcome of gastric cancer patients, respectively. These data demonstrate that miR-584-3p directly targets the MMP-14 promoter to repress YY1-facilitated MMP-14 expression and inhibits the progression of gastric cancer.
Collapse
|
13
|
Megiorni F, Colaiacovo M, Cialfi S, McDowell HP, Guffanti A, Camero S, Felsani A, Losty PD, Pizer B, Shukla R, Cappelli C, Ferrara E, Pizzuti A, Moles A, Dominici C. A sketch of known and novel MYCN-associated miRNA networks in neuroblastoma. Oncol Rep 2017; 38:3-20. [PMID: 28586032 PMCID: PMC5492854 DOI: 10.3892/or.2017.5701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) originates from neural crest-derived precursors and represents the most common childhood extracranial solid tumour. MicroRNAs (miRNAs), a class of small non-coding RNAs that participate in a wide variety of biological processes by regulating gene expression, appear to play an essential role within the NB context. High-throughput next generation sequencing (NGS) was applied to study the miRNA transcriptome in a cohort of NB tumours with and without MYCN-amplification (MNA and MNnA, respectively) and in dorsal root ganglia (DRG), as a control. Out of the 128 miRNAs differentially expressed in the NB vs. DRG comparison, 47 were expressed at higher levels, while 81 were expressed at lower levels in the NB tumours. We also found that 23 miRNAs were differentially expressed in NB with or without MYCN-amplification, with 17 miRNAs being upregulated and 6 being downregulated in the MNA subtypes. Functional annotation analysis of the target genes of these differentially expressed miRNAs demonstrated that many mRNAs were involved in cancer-related pathways, such as DNA-repair and apoptosis as well as FGFR and EGFR signalling. In particular, we found that miR-628-3p negatively affects MYCN gene expression. Furthermore, we identified a novel miRNA candidate with variable expression in MNA vs. MNnA tumours, whose putative target genes are implicated in the mTOR pathway. The present study provides further insight into the molecular mechanisms that correlate miRNA dysregulation to NB development and progression.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Heather P McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Paul D Losty
- Department of Paediatric Surgery, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK
| | - Carlo Cappelli
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Eva Ferrara
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Moles
- Genomnia s.r.l., I-20091 Bresso, MI, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
14
|
Fateh A, Feizi MAH, Safaralizadeh R, Azarbarzin S. Importance of miR-299-5p in colorectal cancer. Ann Gastroenterol 2017; 30:322-326. [PMID: 28469363 PMCID: PMC5411383 DOI: 10.20524/aog.2017.0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) are effective regulators of gene expression that play a pivotal role in the pathogenesis of colorectal cancer (CRC) and various other cancers. The high prevalence of aberrant miRNA expression in CRC suggests that they can be used as biomarkers and anticancer molecules for therapeutic purposes. There is evidence that microRNA-299-5p (miR-299-5p) is associated with vital cell processes (e.g. epithelial-mesenchymal transition, proliferation, and tumorigenicity) and its improper expression with tumorigenesis in many types of human cancer. This prospective study investigated the contribution of miR-299-5p to CRC tumorigenesis. Methods The real-time reverse transcription-polymerase chain reaction was used to examine miR-299-5p expression levels prospectively in 40 sample pairs of CRC tissue and adjacent noncancerous tissue (>2 cm from cancer tissue). The ability of miR-299-5p to function as a tumor marker was also examined. Results The expression levels of miR-299-5p were significantly downregulated in the group of CRC samples compared with matched noncancerous tissue samples. No significant relationship was found between miR-299-5p expression levels and clinicopathological features. Receiver operating characteristic analysis gave an area under the curve of 71% for miR-299-5p with 68% sensitivity and 78% specificity (P=0.001). Conclusion The miRNA miR-299-5p may be considered as a tumor marker in CRC and could be of assistance as a potential predictive biomarker in the diagnosis of this cancer.
Collapse
Affiliation(s)
- Alavieh Fateh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Spain E, Adamson K, Elshahawy M, Bray I, Keyes TE, Stallings RL, Forster RJ. Hemispherical platinum : silver core : shell nanoparticles for miRNA detection. Analyst 2017; 142:752-762. [DOI: 10.1039/c6an02609e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel electrochemical detection based on regioselective functionalised electrocatalytic nanoparticles suitable for the detection of low-abundance molecular biomarkers, miR-132 of neuroblastoma.
Collapse
Affiliation(s)
- Elaine Spain
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Kellie Adamson
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Mohammad Elshahawy
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Isabella Bray
- Department of Molecular and Cellular Therapeutics
- Royal College of Surgeons in Ireland
- Dublin
- Ireland
| | - Tia E. Keyes
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Raymond L. Stallings
- Department of Molecular and Cellular Therapeutics
- Royal College of Surgeons in Ireland
- Dublin
- Ireland
| | - Robert J. Forster
- School of Chemical Sciences
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
16
|
Salazar BM, Balczewski EA, Ung CY, Zhu S. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology. Int J Mol Sci 2016; 18:E37. [PMID: 28035989 PMCID: PMC5297672 DOI: 10.3390/ijms18010037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.
Collapse
Affiliation(s)
- Brittany M Salazar
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Emily A Balczewski
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Li D, Cao Y, Li J, Xu J, Liu Q, Sun X. miR-506 suppresses neuroblastoma metastasis by targeting ROCK1. Oncol Lett 2016; 13:417-422. [PMID: 28123576 DOI: 10.3892/ol.2016.5442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/28/2016] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is a complex form of cancer with highly heterogeneous clinical behavior that arises during childhood from precursor cells of the sympathetic nervous system. In patients with neuroblastoma, mortality often occurs as a result of metastasis. The disease predominantly spreads to bone marrow, with a survival rate of ~40%. The current study demonstrates that microRNA (miR)-506 directly targets and downregulates Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) in transforming growth factor (TGF)-β non-canonical pathways. It may be concluded that ROCK1 contributes to the invasion and migration of neuroblastoma cells by directly downregulating miR-506; thus, leading to the upregulation of ROCK1, which promotes cell invasion and migration. The present results provide a novel understanding of how miR-506 directly regulates TGF-β non-canonical signaling.
Collapse
Affiliation(s)
- Dianguo Li
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yanhua Cao
- Department of Pediatrics, General Hospital of Jinan Command, Jinan, Shandong 250031, P.R. China
| | - Jinliang Li
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jialong Xu
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qian Liu
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaogang Sun
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
18
|
Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, Chen Y, Yang F, Li H, Huang K, Tong Q. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis 2016; 7:e2382. [PMID: 27685626 PMCID: PMC5059886 DOI: 10.1038/cddis.2016.293] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan–Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hongxia Qu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huanhuan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
19
|
Xiang X, Mei H, Zhao X, Pu J, Li D, Qu H, Jiao W, Zhao J, Huang K, Zheng L, Tong Q. miRNA-337-3p suppresses neuroblastoma progression by repressing the transcription of matrix metalloproteinase 14. Oncotarget 2016; 6:22452-66. [PMID: 26084291 PMCID: PMC4673175 DOI: 10.18632/oncotarget.4311] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
Recent evidence shows the emerging roles of endogenous microRNAs (miRNAs) in repressing gene transcription. However, the miRNAs inhibiting the transcription of matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP crucial for the tumorigenesis and aggressiveness, still remain largely unknown. In this study, through mining computational algorithm program and genome-wide Argonaute profiling dataset, we identified one binding site of miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that miR-337-3p was under-expressed and inversely correlated with MMP-14 expression in clinical specimens and cell lines of neuroblastoma (NB), the most common extracranial solid tumor in childhood. Patients with high miR-337-3p expression had greater survival probability. miR-337-3p suppressed the promoter activity, nascent transcription, and expression of MMP-14, resulting in decreased levels of vascular endothelial growth factor, in cultured NB cell lines. Mechanistically, miR-337-3p recognized its binding site and recruited Argonaute 2 to facilitate the enrichment of repressive epigenetic markers and decrease the binding of RNA polymerase II and specificity protein 1 on the MMP-14 promoter. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. In addition, restoration of MMP-14 expression rescued the NB cells from changes in these biological features. Taken together, these data indicate that miR-337-3p directly binds the MMP-14 promoter to repress its transcription, thus suppressing the progression of NB.
Collapse
Affiliation(s)
- Xuan Xiang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Hongxia Qu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
20
|
Mari E, Zicari A, Fico F, Massimi I, Martina L, Mardente S. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines. Oncol Lett 2016; 12:2133-2138. [PMID: 27602152 DOI: 10.3892/ol.2016.4876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 06/02/2016] [Indexed: 11/06/2022] Open
Abstract
microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and -222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for neuroblastoma.
Collapse
Affiliation(s)
- Emanuela Mari
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Alessandra Zicari
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Flavia Fico
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Isabella Massimi
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Lolli Martina
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Stefania Mardente
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
21
|
Risk stratification and therapeutics of neuroblastoma: the challenges remain. World J Pediatr 2016; 12:5-7. [PMID: 26782342 DOI: 10.1007/s12519-016-0001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022]
|
22
|
Chemoresistance, cancer stem cells, and miRNA influences: the case for neuroblastoma. Anal Cell Pathol (Amst) 2015; 2015:150634. [PMID: 26258008 PMCID: PMC4516851 DOI: 10.1155/2015/150634] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is a type of cancer that develops most often in infants and children under the age of five years. Neuroblastoma originates within the peripheral sympathetic ganglia, with 30% of the cases developing within the adrenal medulla, although it can also occur within other regions of the body such as nerve tissue in the spinal cord, neck, chest, abdomen, and pelvis. MicroRNAs (miRNAs) regulate cellular pathways, differentiation, apoptosis, and stem cell maintenance. Such miRNAs regulate genes involved in cellular processes. Consequently, they are implicated in the regulation of a spectrum of signaling pathways within the cell. In essence, the role of miRNAs in the development of cancer is of utmost importance for the understanding of dysfunctional cellular pathways that lead to the conversion of normal cells into cancer cells. This review focuses on highlighting the recent, important implications of miRNAs within the context of neuroblastoma basic research efforts, particularly concerning miRNA influences on cancer stem cell pathology and chemoresistance pathology for this condition, together with development of translational medicine approaches for novel diagnostic tools and therapies for this neuroblastoma.
Collapse
|
23
|
Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L, Tong Q. miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1743-54. [PMID: 26047679 DOI: 10.1016/j.bbadis.2015.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 01/23/2023]
Abstract
Matrix metalloproteinase 14 (MMP-14) is a membrane-anchored MMP crucial for tumorigenesis and aggressiveness, and is highly expressed in neuroblastoma (NB), the most common extracranial solid tumor in childhood. Recent evidence shows the emerging roles of endogenous promoter-targeting microRNAs (miRNAs) in regulating gene transcription. However, the roles of miRNAs in the transcription of MMP-14 still remain largely unknown. In this study, through mining computational algorithm program and Argonaute-chromosome interaction dataset, we identified one binding site of miRNA-584-5p (miR-584-5p) within the MMP-14 promoter. In NB tissues, miR-584-5p was under-expressed and inversely correlated with MMP-14 expression, and was an independent prognostic factor for favorable outcome of patients. miR-584-5p precursor attenuated the expression of MMP-14 in a Dicer-dependent manner, resulting in decreased levels of vascular endothelial growth factor, in cultured NB cell lines. In addition, miR-584-5p suppressed the promoter activity of MMP-14, and mutation of miR-584-5p binding site abolished these effects. Mechanistically, miR-584-5p recruited Argonaute 2 to facilitate the enrichment of enhancer of zeste homolog 2, histone H3 lysine 27 trimethylation, and histone H3 lysine 9 dimethylation on MMP-14 promoter in NB cells, which was abolished by repressing the miR-584-5p-promoter interaction. Gain- and loss-of-function studies demonstrated that miR-584-5p suppressed the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Moreover, restoration of MMP-14 expression rescued the NB cells from changes in these biological features. Taken together, these results indicate that promoter-targeting miR-584-5p exerts tumor suppressive functions in NB through repressing the transcription of MMP-14.
Collapse
Affiliation(s)
- Xuan Xiang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Hongxia Qu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China.
| |
Collapse
|
24
|
Gulino R, Forte S, Parenti R, Memeo L, Gulisano M. MicroRNA and pediatric tumors: Future perspectives. Acta Histochem 2015; 117:339-54. [PMID: 25765112 DOI: 10.1016/j.acthis.2015.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
A better understanding of pediatric tumor biology is needed to allow the development of less toxic and more efficient therapies, as well as to provide novel reliable biomarkers for diagnosis and risk stratification. The emerging role of microRNAs in controlling key pathways implicated in tumorigenesis makes their use in diagnostics a powerful novel tool for the early detection, risk assessment and prognosis, as well as for the development of innovative anticancer therapies. This perspective would be more urgent for the clinical management of pediatric cancer. In this review, we focus on the involvement of microRNAs in the biology of the main childhood tumors, describe their clinical significance and discuss their potential use as novel therapeutic tools and targets.
Collapse
Affiliation(s)
- Rosario Gulino
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy.
| | - Stefano Forte
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| | - Lorenzo Memeo
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Massimo Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| |
Collapse
|
25
|
Qu H, Zheng L, Pu J, Mei H, Xiang X, Zhao X, Li D, Li S, Mao L, Huang K, Tong Q. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet 2015; 24:2539-51. [PMID: 25616966 DOI: 10.1093/hmg/ddv018] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022] Open
Abstract
Heparanase (HPSE) is the endogenous endoglycosidase that degrades heparan sulfate proteoglycans and promotes the tumor growth, invasion, metastasis and angiogenesis. Our previous studies have shown that HPSE is highly expressed in neuroblastoma (NB), the most common extracranial solid tumor in childhood. However, the underlying regulatory mechanisms remain largely unknown. In this study, we identified one binding site of microRNA-558 (miR-558) within the HPSE promoter. In NB tissues and cell lines, miR-558 was up-regulated and positively correlated with HPSE expression. Gain- and loss-of-function studies demonstrated that miR-558 facilitated the transcript and protein levels of HPSE and its downstream gene, vascular endothelial growth factor, in NB cell lines. In addition, miR-558 enhanced the promoter activities of HPSE, and these effects were abolished by the mutation of the miR-558-binding site. Mechanistically, miR-558 induced the enrichment of the active epigenetic marker and RNA polymerase II on the HPSE promoter in NB cells in an Argonaute 1-dependent manner, which was abolished by repressing the miR-558-promoter interaction. Knockdown of endogenous miR-558 decreased the growth, invasion, metastasis and angiogenesis of NB cells in vitro and in vivo. In contrast, over-expression of miR-558 promoted the growth, invasion, metastasis and angiogenesis of SH-SY5Y and SK-N-SH cells. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by knockdown or over-expression of miR-558. These data indicate that miR-558 induces the transcriptional activation of HPSE via the binding site within promoter, thus facilitating the tumorigenesis and aggressiveness of NB.
Collapse
Affiliation(s)
| | - Liduan Zheng
- Department of Pathology, Clinical Center of Human Genomic Research and
| | | | | | | | | | - Dan Li
- Department of Pediatric Surgery
| | | | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, People's Republic of China
| | - Kai Huang
- Clinical Center of Human Genomic Research and
| | - Qiangsong Tong
- Department of Pediatric Surgery, Clinical Center of Human Genomic Research and
| |
Collapse
|
26
|
Shalaby T, Fiaschetti G, Baumgartner M, Grotzer MA. MicroRNA signatures as biomarkers and therapeutic target for CNS embryonal tumors: the pros and the cons. Int J Mol Sci 2014; 15:21554-86. [PMID: 25421247 PMCID: PMC4264241 DOI: 10.3390/ijms151121554] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 12/19/2022] Open
Abstract
Embryonal tumors of the central nervous system represent a heterogeneous group of childhood cancers with an unknown pathogenesis; diagnosis, on the basis of histological appearance alone, is controversial and patients’ response to therapy is difficult to predict. They encompass medulloblastoma, atypical teratoid/rhabdoid tumors and a group of primitive neuroectodermal tumors. All are aggressive tumors with the tendency to disseminate throughout the central nervous system. The large amount of genomic and molecular data generated over the last 5–10 years encourages optimism that new molecular targets will soon improve outcomes. Recent neurobiological studies have uncovered the key role of microRNAs (miRNAs) in embryonal tumors biology and their potential use as biomarkers is increasingly being recognized and investigated. However the successful use of microRNAs as reliable biomarkers for the detection and management of pediatric brain tumors represents a substantial challenge. This review debates the importance of miRNAs in the biology of central nervous systemembryonal tumors focusing on medulloblastoma and atypical teratoid/rhabdoid tumors and highlights the advantages as well as the limitations of their prospective application as biomarkers and candidates for molecular therapeutic targets.
Collapse
Affiliation(s)
- Tarek Shalaby
- Department of Oncology, University Children's Hospital of Zurich, Steinwiesstrasse 75, Zurich 8032, Switzerland.
| | - Giulio Fiaschetti
- Department of Oncology, University Children's Hospital of Zurich, Steinwiesstrasse 75, Zurich 8032, Switzerland.
| | - Martin Baumgartner
- Department of Oncology, University Children's Hospital of Zurich, Steinwiesstrasse 75, Zurich 8032, Switzerland.
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital of Zurich, Steinwiesstrasse 75, Zurich 8032, Switzerland.
| |
Collapse
|
27
|
Significance and therapeutic value of miRNAs in embryonal neural tumors. Molecules 2014; 19:5821-62. [PMID: 24806581 PMCID: PMC6271640 DOI: 10.3390/molecules19055821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023] Open
Abstract
Embryonal tumors of the nervous system are the leading cause of childhood cancer-related morbidity and mortality. Medulloblastoma, supratentorial primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumor and neuroblastoma account for more than 20% of childhood malignancies and typify the current neural embryonal tumor model in pediatric oncology. Mechanisms driving the formation of these tumors point towards impaired differentiation of neuronal and neuron-associated cells during the development of the nervous system as an important factor. The importance of microRNAs (miRNAs) for proper embryonic cell function has been confirmed and their aberrant expressions have been linked to tumor development. The role of miRNAs in controlling essential regulators of key pathways implicated in tumor development makes their use in diagnostics a powerful tool to be used for early detection of cancer, risk assessment and prognosis, as well as for the design of innovative therapeutic strategies. In this review we focus on the significance of miRNAs involved in the biology of embryonal neural tumors, delineate their clinical significance and discuss their potential as a novel therapeutic target.
Collapse
|