1
|
Xiao J, Feng C, Zhu T, Zhang X, Chen X, Li Z, You J, Wang Q, Zhuansun D, Meng X, Wang J, Xiang L, Yu X, Zhou B, Tang W, Tou J, Wang Y, Yang H, Yu L, Liu Y, Jiang X, Ren H, Yu M, Chen Q, Yin Q, Liu X, Xu Z, Wu D, Yu D, Wu X, Yang J, Xiong B, Chen F, Hao X, Feng J. Rare and common genetic variants underlying the risk of Hirschsprung's disease. Hum Mol Genet 2025:ddae205. [PMID: 39817569 DOI: 10.1093/hmg/ddae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
Hirschsprung's disease (HSCR) is a congenital enteric neuropathic disorder characterized by high heritability (>80%) and polygenic inheritance (>20 genes). The previous genome-wide association studies (GWAS) identified several common variants associated with HSCR and demonstrated increased predictive performance for HSCR risk in Europeans using a genetic risk score, there remains a notable gap in knowledge regarding Chinese populations. We conducted whole exome sequencing in a HSCR case cohort in Chinese. By using the common controls (505 controls from 1KG EAS and 10 588 controls from ChinaMAP), we conducted GWAS for the common variants in the exome and gene-based association for rare variants. We further validated the associated variants and genes in replicated samples and in vitro and vivo experiments. We identified one novel gene PLK5 by GWAS and suggested 45 novel putative genes based the gene-based test. By using genetic variant at RET and PLK5, we constructed a genetic risk score that could identify the individuals with very high genetic risk for HSCR. Compared with patients with zero or one risk allele from the three variants, the risk for HSCR was 36.61 times higher with six alleles. In addition, we delineated a HSCR risk gene landscape that encompasses 57 genes, which explains 88.5% and 54.5% of HSCR in Chinese and European, respectively. In summary, this study improved the understanding of genetic architecture of HSCR and provided a risk prediction approach for HSCR in the Chinese.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Chenzhao Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, No. 6 Longtian South Road, Longtian Subdistrict, Pingshan District, Shenzhen, Guangdong 518122, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Qiong Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210008, China
| | - Jinfa Tou
- Department of General Surgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, Zhejiang 310003, China
| | - Yi Wang
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Heying Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, No. 1 Renmin Road, Erqi District, Henan 450052, China
| | - Lei Yu
- Department of Neonatal Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, Hubei 430030, China
| | - Yuanmei Liu
- Department of Pediatric Surgery, The Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563000, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69, Dongxia North Road, Jinping District, Shantou, Guangdong 515041, China
| | - Hongxia Ren
- Department of Neonatal Surgery, Children's Hospital of Shanxi, No. 13 Xinminbei Street, Xinhualing district, Taiyuan, Shanxi 030013, China
| | - Mei Yu
- Department of Pediatric Surgery, Guiyang Maternal and Child Health Hospital, No. 63 Ruijin South Road, Nanming district, Guiyang, Guizhou 550002, China
| | - Qi Chen
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, No. 7 Kangfuqian Street, Erqi District, Zhengzhou 450052, Henan, China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan 515041, China
| | - Xiang Liu
- Department of Pediatric Surgery, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Wuhu Road Subdistrict, Hefei, Anhui 230051, China
| | - Zhilin Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, No. 199 Dazhi Street, Nangang district, Harbin, Heilongjiang 150001, China
| | - Dianming Wu
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Donghai Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, Hubei 430030, China
| | - Feng Chen
- Department of Pediatric Surgery, Union Hospital, Fujian Medical University, No. 29, Xinquan Road, Gulou District, Fuzhou, Fujian 350001, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, Hubei 430030, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's disease and allied disorders, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Wang J, Meng X, Chen X, Xiao J, Yu X, Wu L, Li Z, Chen K, Zhang X, Xiong B, Feng J. Cinchophen induces RPA1 related DNA damage and apoptosis to impair ENS development of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116032. [PMID: 38306819 DOI: 10.1016/j.ecoenv.2024.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have become contaminants widely distributed in the environment due to improper disposal and discharge. Previous study has found several components might involve in impairing enteric nervous system (ENS) development of zebrafish, including NSAIDs cinchophen. Deficient ENS development in fetal could lead to Hirschsprung disease (HSCR), a congenital neurocristopathy characterized by absence of enteric neurons in hindgut. However, the intrinsic mechanism of neurotoxicity of cinchophen is unclear. We confirmed that cinchophen could impair ENS development of zebrafish and transcriptome sequencing revealed that disfunction of Replication protein A1 (RPA1), which is involved in DNA replication and repairment, might be relevant to the neurotoxicity effects induced by cinchophen. Based on previous data of single cell RNA sequencing (scRNA-seq) of zebrafish gut cells, we observed that rpa1 mainly expressed in proliferating, differentiating ENS cells and neural crest progenitors. Interestingly, cinchophen induced apoptosis and impaired proliferation. Furthermore, cinchophen caused DNA damage and abnormal activation of ataxia telangiectasia mutated/ Rad3 related (ATM/ATR) and checkpoint kinase 2 (CHK2). Finally, molecular docking indicated cinchophen could bind and antagonize RPA1 more effectively. Our study might provide a better understanding and draw more attention to the role of environmental factors in the pathogenesis of HSCR. And the mechanism of cinchophen neurotoxicity would give theoretical guidance for clinical pharmacy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal & Child Healthcare Hospital of Shenzhen, Shenzhen 518000, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Montalva L, Cheng LS, Kapur R, Langer JC, Berrebi D, Kyrklund K, Pakarinen M, de Blaauw I, Bonnard A, Gosain A. Hirschsprung disease. Nat Rev Dis Primers 2023; 9:54. [PMID: 37828049 DOI: 10.1038/s41572-023-00465-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Hirschsprung disease (HSCR) is a rare congenital intestinal disease that occurs in 1 in 5,000 live births. HSCR is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine. Most patients present during the neonatal period with the first meconium passage delayed beyond 24 h, abdominal distension and vomiting. Syndromes associated with HSCR include trisomy 21, Mowat-Wilson syndrome, congenital central hypoventilation syndrome, Shah-Waardenburg syndrome and cartilage-hair hypoplasia. Multiple putative genes are involved in familial and isolated HSCR, of which the most common are the RET proto-oncogene and EDNRB. Diagnosis consists of visualization of a transition zone on contrast enema and confirmation via rectal biopsy. HSCR is typically managed by surgical removal of the aganglionic bowel and reconstruction of the intestinal tract by connecting the normally innervated bowel down to the anus while preserving normal sphincter function. Several procedures, namely Swenson, Soave and Duhamel procedures, can be undertaken and may include a laparoscopically assisted approach. Short-term and long-term comorbidities include persistent obstructive symptoms, enterocolitis and soiling. Continued research and innovation to better understand disease mechanisms holds promise for developing novel techniques for diagnosis and therapy, and improving outcomes in patients.
Collapse
Affiliation(s)
- Louise Montalva
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France.
- Faculty of Health, Paris-Cité University, Paris, France.
- NeuroDiderot, INSERM UMR1141, Paris, France.
| | - Lily S Cheng
- Division of Paediatric Surgery, Texas Children's Hospital, Houston, TX, USA
- Division of Paediatric Surgery, University of Virginia, Charlottesville, VA, USA
| | - Raj Kapur
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jacob C Langer
- Division of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominique Berrebi
- Department of Pathology, Robert-Debré and Necker Children's University Hospital, Paris, France
| | - Kristiina Kyrklund
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Pakarinen
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, Netherlands
| | - Arnaud Bonnard
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France
- Faculty of Health, Paris-Cité University, Paris, France
- NeuroDiderot, INSERM UMR1141, Paris, France
| | - Ankush Gosain
- Department of Paediatric Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
5
|
Chen K, You J, Yang S, Meng X, Chen X, Wu L, Yu X, Xiao J, Feng J. Abnormally elevated expression of ACTA2 of circular smooth muscle leads to hyperactive contraction in aganglionic segments of HSCR. Pediatr Surg Int 2023; 39:214. [PMID: 37278766 PMCID: PMC10244273 DOI: 10.1007/s00383-023-05479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Actin Alpha 2 (ACTA2) is expressed in intestinal smooth muscle cells (iSMCs) and is associated with contractility. Hirschsprung disease (HSCR), one of the most common digested tract malformations, shows peristaltic dysfunction and spasm smooth muscles. The arrangement of the circular and longitudinal smooth muscle (SM) of the aganglionic segments is disorganized. Does ACTA2, as a marker of iSMCs, exhibit abnormal expression in aganglionic segments? Does the ACTA2 expression level affect the contraction function of iSMCs? What are the spatiotemporal expression trends of ACTA2 during different developmental stages of the colon? METHODS Immunohistochemical staining was used to detect the expression of ACTA2 in iSMCs of children with HSCR and Ednrb-/- mice, and the small interfering RNAs (siRNAs) knockdown technique was employed to investigate how Acta2 affected the systolic function of iSMCs. Additionally, Ednrb-/- mice were used to explore the changes in the expression level of iSMCs ACTA2 at different developmental stages. RESULTS The expression of ACTA2 is higher in circular SM in the aganglionic segments of HSCR patients and Ednrb-/- mice than in normal control children and mice. Down regulation of Acta2 weakens the contraction ability of intestinal smooth muscle cells. Abnormally elevated expression of ACTA2 of circular smooth muscle occurs since embryonic day 15.5 (E15.5d) in aganglionic segments of Ednrb-/- mice. CONCLUSIONS Abnormally elevated expression of ACTA2 in the circular SM leads to hyperactive contraction, which may cause the spasm of aganglionic segments in HSCR.
Collapse
Affiliation(s)
- Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China.
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China.
| |
Collapse
|