1
|
Li MY, Wu Y, Tang HL, Wang Y, Li B, He YY, Yan GJ, Yang ZM. Embryo-Derived Cathepsin B Promotes Implantation and Decidualization by Activating Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402299. [PMID: 39316370 DOI: 10.1002/advs.202402299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/17/2024] [Indexed: 09/25/2024]
Abstract
Embryo implantation and decidualization are crucial for a successful pregnancy. How the inflammatory response is regulated during these processes is undefined. Pyroptosis is an inflammatory form of cell death mediated by gasdermin D (GSDMD). Through in vivo, cultured epithelial cells and organoids, it is shown that pyroptosis occurs in epithelial cells at the implantation site. Compared with those on day 4 of pseudopregnancy and delayed implantation, pyroptosis-related protein levels are significantly increased on day 4 of pregnancy and activated implantation, suggesting that blastocysts are involved in regulating pyroptosis. Blastocyst-derived cathepsin B (CTSB) is stimulated by preimplantation estradiol-17β and induces pyroptosis in epithelial cells. Pyroptosis-induced IL-18 secretion from epithelial cells activates a disintegrin and metalloprotease 12 (ADAM12) to process the epiregulin precursor into mature epiregulin. Epiregulin (EREG) enhances in vitro decidualization in mice. Pyroptosis-related proteins are detected in the mid-secretory human endometrium and are elevated in the recurrent implantation failure endometrium. Lipopolysaccharide treatment in pregnant mice causes implantation failure and increases pyroptosis-related protein levels. Therefore, the data suggest that modest pyroptosis is beneficial for embryo implantation and decidualization. Excessive pyroptosis can be harmful and lead to pregnancy failure.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hao-Lan Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gui-Jun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Maria da Silva Rosa P, Bridi A, de Ávila Ferronato G, Nociti RP, Camargo Dos Santos A, Cataldi TR, Santos GD, Chiaratti MR, Silva LA, Pugliesi G, Sangalli JR, Meirelles FV, Perecin F, Coelho da Silveira J. Corpus luteum proximity alters molecular signature of the small extracellular vesicles and cumulus cells in the bovine ovarian follicle environment. Mol Cell Endocrinol 2024; 592:112347. [PMID: 39181310 DOI: 10.1016/j.mce.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Progesterone (P4) is predicted to act as a negative regulatory hormone for oocyte maturation events; however, its local effects during follicular development remain poorly understood in bovine. The complex process of oocyte meiosis progression is dependent on cellular communication among follicular cells. Besides, the breakdown of this communication, mainly between cumulus cells (CC) and oocyte, through the retraction of cumulus projections connecting these cells can impact oocyte maturation. In our study, we observed that follicles from the ovary ipsilateral to the corpus luteum (CL) containing high intrafollicular P4 concentrations enhance the abundance of proteins detected in follicular-derived small extracellular vesicles (sEVs) predicted to be involved in the retraction of membrane projections based on actin filaments, such as transzonal projections (TZPs). Conversely, we found that follicles from the ovary contralateral to the CL, which contained low intrafollicular P4 concentrations, had a high detection of proteins predicted to regulate the maintenance of TZPs. We also performed RNAseq analysis which demonstrated that 177 genes were differentially expressed in CC under the different P4 environments. Bioinformatic analysis points to changes associated to cell metabolism in cells from follicles ipsilateral to the CL in comparison to genes involved in cell communication in CC from follicles contralateral to the CL. Our functional analysis experiment confirmed that supplementation of cumulus-oocyte complexes during in vitro maturation with P4 at concentration similar to ipsilateral follicles reduces the number of TZPs. In summary, our study underscores a direct association between P4 concentration and cumulus-oocyte interaction, with potential consequences for the acquisition of oocyte competence.
Collapse
Affiliation(s)
- Paola Maria da Silva Rosa
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Giuliana de Ávila Ferronato
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Ricardo Perecin Nociti
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Thaís Regiani Cataldi
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gislaine Dos Santos
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Luciano Andrade Silva
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
3
|
Banerjee S, Oguljahan B, Thompson WE, Chowdhury I. Neuregulin 1 Signaling Attenuates Tumor Necrosis Factor α-Induced Female Rat Luteal Cell Death. Endocrinology 2024; 165:bqae129. [PMID: 39312480 PMCID: PMC11456883 DOI: 10.1210/endocr/bqae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
The corpus luteum (CL) is a transient ovarian endocrine structure that maintains pregnancy in primates during the first trimester and in rodents during the entire pregnancy by producing steroid hormone progesterone (P4). CL lifespan, growth, and differentiation are tightly regulated by survival and cell death signals through luteotrophic and luteolytic factors, including the epidermal growth factor (EGF)-like factor family. Neuregulin 1 (NRG1), a member of the EGF family, mediates its effect through ErbB2/3 receptors. However, the functional role of NRG1 in luteal cells (LCs) is unknown. Thus, this study investigated the role of NRG1 and its molecular mechanism of action in rat LC. Our experimental results suggest a strong positive correlation between steroidogenic acute regulatory protein (StAR) and NRG1 expression in mid-CL and serum P4 and estrogen (E2) production. In contrast, there was a decrease in StAR and NRG1 expression and P4 and E2 production with an increase in tumor necrosis factor α (TNFα) expression in regressing CL. Further in vitro studies in LCs showed that the knockdown of endogenous Nrg1 promoted the expression of proinflammatory and proapoptotic factors and decreased prosurvival factor expression. Subsequently, treatment with exogenous TNFα under these experimental conditions profoundly elevated proinflammatory and proapoptotic factors. Further analysis demonstrated that the phosphorylation status of ErbB2/3, PI3K, Ak strain transforming or protein kinase B (Akt), and ErK1/2 was significantly inhibited under these experimental conditions, whereas the treatment of TNFα further inhibited the phosphorylation of ErbB2/3, PI3K, Akt, and ErK1/2. Collectively, these studies provide new insights into the NRG1-mediated immunomodulatory and prosurvival role in LCs, which may maintain the function of CL.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Babayewa Oguljahan
- Center for Laboratory Animal Resources, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
4
|
Chen Y, Wang S, Zhang C. The Differentiation Fate of Granulosa Cells and the Regulatory Mechanism in Ovary. Reprod Sci 2024:10.1007/s43032-024-01682-w. [PMID: 39192066 DOI: 10.1007/s43032-024-01682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Granulosa cells (GCs) are important drives of the reproductive process, not only the supporting cells for nutrition, but also cells with endocrine functions. Their differentiation and development parallel the entire menstruation period and even during pregnancy, making it tightly linked to the fate of the follicle. To elucidate the underlying mechanism is of great significance for related researches. The life course of GCs is briefly divided into five stages, from epithelial cells to pre-granulosa cells, GCs, mural and cumulus cells, lutein cells, and eventually disappear. A wide variety of genes and transcription factors participate in the regulation of different stages, and more importantly, various hormones secreted by the pituitary gland and GCs themselves play a leading role. These endogenous and exogenous signalling molecules interact to form a cross-linked communication network, promoting the development of GCs. Together with oocytes, theca cells and other functional cells in the ovary, GCs drive one of the most vital biological processes in women.
Collapse
Affiliation(s)
- Yilin Chen
- Queen Mary School, Nanchang University, Nanchang, 330006, China
| | - Shimeng Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Fan X, Wang J, Ma Y, Chai D, Han S, Xiao C, Huang Y, Wang X, Wang J, Wang S, Xiao L, Zhang C. Activation of P2X7 Receptor Mediates the Abnormal Ovulation Induced by Chronic Restraint Stress and Chronic Cold Stress. BIOLOGY 2024; 13:620. [PMID: 39194558 DOI: 10.3390/biology13080620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Chronic stress has become a major problem that endangers people's physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced by chronic stress. Whether P2X7R is involved in the effect of chronic stress on female reproduction has not been studied. In this study, we established a chronic restraint stress mouse model and chronic cold stress mouse model. We found that the number of corpora lutea was significantly reduced in the two chronic stress models. The number of corpora lutea indirectly reflects the ovulation, suggesting that chronic stress influences ovulation. P2X7R expression was significantly increased in ovaries of the two chronic stress models. A superovulation experiment showed that P2X7R inhibitor A-438079 HCL partially rescued the ovulation rate of the two chronic stress models. Further studies showed that activation of P2X7R signaling inhibited the cumulus expansion and promoted the expression of NPPC in granulosa cells, one key negative factor of cumulus expansion. Moreover, sirius red staining showed that the ovarian fibrosis was increased in the two chronic stress models. For the fibrosis-related factors, TGF-β1 was increased and MMP2 was decreased. In vitro studies also showed that activation of P2X7R signaling upregulated the expression of TGF-β1 and downregulated the expression of MMP2 in granulosa cells. In conclusion, P2X7R expression was increased in the ovaries of the chronic restraint-stress and chronic cold-stress mouse models. Activation of P2X7R signaling promoted NPPC expression and cumulus expansion disorder, which contributed to the abnormal ovulation of the chronic stress model. Activation of P2X7R signaling is also associated with the ovarian fibrosis changes in the chronic stress model.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Institute of Rehabilitation Science, Shaanxi Provincial Rehabilitation Hospital, Xi'an 710065, China
| | - Jing Wang
- Department of Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yinyin Ma
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dandan Chai
- Shangrao People's Hospital, Shangrao 334000, China
| | - Suo Han
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chuyu Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yingtong Huang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiaojie Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianming Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shimeng Wang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Li Xiao
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Chunping Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
6
|
Huang R, Kratka CE, Pea J, McCann C, Nelson J, Bryan JP, Zhou LT, Russo DD, Zaniker EJ, Gandhi AH, Shalek AK, Cleary B, Farhi SL, Duncan FE, Goods BA. Single-cell and spatiotemporal profile of ovulation in the mouse ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594719. [PMID: 38826447 PMCID: PMC11142086 DOI: 10.1101/2024.05.20.594719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ovulation is a spatiotemporally coordinated process that involves several tightly controlled events, including oocyte meiotic maturation, cumulus expansion, follicle wall rupture and repair, and ovarian stroma remodeling. To date, no studies have detailed the precise window of ovulation at single-cell resolution. Here, we performed parallel single-cell RNA-seq and spatial transcriptomics on paired mouse ovaries across an ovulation time course to map the spatiotemporal profile of ovarian cell types. We show that major ovarian cell types exhibit time-dependent transcriptional states enriched for distinct functions and have specific localization profiles within the ovary. We also identified gene markers for ovulation-dependent cell states and validated these using orthogonal methods. Finally, we performed cell-cell interaction analyses to identify ligand-receptor pairs that may drive ovulation, revealing previously unappreciated interactions. Taken together, our data provides a rich and comprehensive resource of murine ovulation that can be mined for discovery by the scientific community.
Collapse
|
7
|
Rulli SB, Ahtiainen P, Ratner LD, Jonas K, Calandra RS, Poutanen M, Huhtaniemi I. Elevated chorionic gonadotropic hormone in transgenic mice induces parthenogenetic activation and ovarian teratomas. Mol Cell Endocrinol 2024; 587:112214. [PMID: 38537882 DOI: 10.1016/j.mce.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Both male and female reproductive functions are impacted by altered gonadotrophin secretion and action, which may also influence the development of endocrine tumours. To ascertain if chronic hypersecretion of human chorionic gonadotropin (hCG) contributes to the development of gonadal tumours, double transgenic (TG) mice that overexpress hCGα- and β-subunits were analysed. By the age of two months, ovarian tumours with characteristics of teratomas developed with 100% penetrance. Teratomas were also seen in wild-type ovaries orthotopically transplanted into TG mice, demonstrating an endocrine/paracrine mechanism for the hCG-induced ovarian tumorigenesis. Both in vitro and in vivo experiments showed oocyte parthenogenetic activation in TG females. In addition, ovaries showed reduced ovulatory gene expression, inhibited ERK1/2 phosphorylation, and impaired cumulus cell expansion. Hence, persistently high endocrine hCG activity causes parthenogenetic activation and development of ovarian teratomas, along with altered follicle development and impaired ERK1/2 signalling, offering a novel mechanism associated with the molecular pathogenesis of ovarian teratomas.
Collapse
Affiliation(s)
- Susana B Rulli
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Petteri Ahtiainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Kim Jonas
- Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK; Department of Women and Children's Health, School of Population and Life Course Sciences, King's College London, London, SE1 1UL, UK
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
8
|
Cañón-Beltrán K, García-García RM, Cajas YN, Fierro N, Lorenzo PL, Arias-Álvarez M. Improvement of oocyte competence and in vitro oocyte maturation with EGF and IGF-I in Guinea pig model. Theriogenology 2024; 214:206-214. [PMID: 37907035 DOI: 10.1016/j.theriogenology.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
In vitro maturation (IVM) system is an alternative method to superovulation protocols to obtain mature oocytes. Epidermal Growth Factor (EGF) and Insulin-like Growth Factor I (IGF-I) have been widely used in IVM medium in different species. Although the guinea pig is a valuable animal model for reproductive studies, IVM is rarely used. We aimed to establish a suitable in vitro production system using EGF and/or IGF-I during IVM to improve oocyte competence. Firstly, immunolocalization of EGF and IGF-I receptors in the ovary was assessed. An IVM dose-response experiment was performed with cumulus-oocyte complexes (COCs) supplemented with: 1) EGF [0, 10, 50, 100 ng/mL or 10% fetal calf serum (FCS)]; 2) IGF-I [0, 50, 100, 200 ng/mL or 10% FCS]; or 3) the concentrations of EGF and IGF-I which showed the best IVM index in the previous experiments, with or without Fetal Calf Serum (FCS). Cortical granule and mitochondria distribution patterns were determined in in vivo and in vitro-matured oocytes for the first time in this species. Apoptotic rate after IVM and oocyte competence by in vitro embryo development were evaluated. Immunohistochemistry results showed positive immunostaining of EGF and IGF receptors in corpus luteum, oocytes, granulosa and theca cells in follicles in all stages of development. Supplementation of IVM medium with 50 ng/mL EGF or 100 ng/mL IGF-I or their combination with FCS successfully led to oocyte nuclear and cytoplasmic maturation and reduced the apoptotic rate. Both growth factors improved oocyte competence during IVM in this species since early embryos were in vitro developed, showing better results when FCS was used in the IVM medium.
Collapse
Affiliation(s)
- Karina Cañón-Beltrán
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, 11-01-608, Ecuador.
| | - Rosa M García-García
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain
| | - Yulia N Cajas
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), Cuenca, EC010205, Ecuador
| | - Natacha Fierro
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, 11-01-608, Ecuador
| | - Pedro L Lorenzo
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain
| | - María Arias-Álvarez
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain.
| |
Collapse
|
9
|
Mirbahari SN, Amorim CA, Hassani F, Totonchi M, Haddadi M, Valojerdi MR, Dalman A. In-vitro generation of follicle-like structures from human germ cell-like cells derived from theca stem cell combined with ovarian somatic cells. J Ovarian Res 2024; 17:2. [PMID: 38167472 PMCID: PMC10762821 DOI: 10.1186/s13048-023-01315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The objective of this study was to induce the differentiation of human theca stem cells (hTSCs) into germ cell-like cells (hGCLCs) and assess their developmental progression following in vitro 3D culture with ovarian somatic cells within the follicle-like structures. To achieve this, the hTSCs were isolated from small antral follicles of three patients of varying ages and were then seeded in a differentiation medium for 40 days. The differentiated hGCLCs were subsequently aggregated with somatic ovarian cells (cumulus cells and hTSCs) in a ratio of 1:10 and cultured in a growth medium in a suspension culture dish. In addition to examining the morphologies, sizes, and viabilities of the differentiated hGCLCs, this study also analyzed the expression of DAZL and GDF9 proteins within the follicle-like structures. RESULTS After 12 days, the hTSCs began to differentiate into hGCLCs, with their shapes changing from spindle-shaped to spherical. The sizes of hGCLCs increased during the differentiation period (from 25 μm to 50 μm). The survival rate of the hGCLCs after differentiation and in vitro development in primordial follicle-like structures was 54%. Unlike hTSCs, which did not express the DAZL protein, the hGCLCs and follicle-like structures successfully expressed DAZL protein (P-value < 0.05). However, hGCLCs poorly expressed the GDF9 protein. Further, the culture of hGCLCs in primordial follicle-like structures significantly increased GDF9 expression (P-value < 0.05). CONCLUSION In conclusion, our study demonstrated that 3D cultures with ovarian somatic cells in follicle-like structures caused the successful differentiation of reproducible hGCLCs from hTSCs derived from three patients of different ages. Moreover, this method not only enhanced the in vitro development of hGCLCs but also presented a novel approach for co-culturing and developing in vitro oocyte like cells, ultimately leading to the production of artificial follicles.
Collapse
Affiliation(s)
- Seyedeh Nasim Mirbahari
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box, Tehran, 19395- 4644, Iran
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box, Tehran, 19395- 4644, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahnaz Haddadi
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | | | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem Avenue, Resalat Highway, PO Box, Tehran, 19395- 4644, Iran.
| |
Collapse
|
10
|
Shirafuta Y, Tamura I, Shiroshita A, Fujimura T, Maekawa R, Taketani T, Sugino N. Analysis of cell-cell interaction between mural granulosa cells and cumulus granulosa cells during ovulation using single-cell RNA sequencing data of mouse ovary. Reprod Med Biol 2024; 23:e12564. [PMID: 38361634 PMCID: PMC10867398 DOI: 10.1002/rmb2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Purpose We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-β-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Amon Shiroshita
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Taishi Fujimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryo Maekawa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Toshiaki Taketani
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
11
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
12
|
Wei R, Zhang X, Li X, Wen J, Liu H, Fu J, Li L, Zhang W, Liu Z, Yang Y, Zou K. A rapid and stable spontaneous reprogramming system of Spermatogonial stem cells to Pluripotent State. Cell Biosci 2023; 13:222. [PMID: 38041111 PMCID: PMC10693117 DOI: 10.1186/s13578-023-01150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The scarcity of pluripotent stem cells poses a major challenge to the clinical application, given ethical and biosafety considerations. While germline stem cells commit to gamete differentiation throughout life, studies demonstrated the spontaneous acquisition of pluripotency by spermatogonial stem cells (SSCs) from neonatal testes at a low frequency (1 in 1.5 × 107). Notably, this process occurs without exogenous oncogenes or chemical supplementation. However, while knockout of the p53 gene accelerates the transformation of SSCs, it also increases risk and hampers their clinical use. RESULTS We report a transformation system that efficiently and stably convert SSCs into pluripotent stem cells around 10 passages with the morphology similar to that of epiblast stem cells, which convert to embryonic stem (ES) cell-like colonies after change with ES medium. Epidermal growth factor (EGF), leukemia inhibitory factor (LIF) and fresh mouse embryonic fibroblast feeder (MEF) are essential for transformation, and addition of 2i (CHIR99021 and PD0325901) further enhanced the pluripotency. Transcriptome analysis revealed that EGF activated the RAS signaling pathway and inhibited p38 to initiate transformation, and synergically cooperated with LIF to promote the transformation. CONCLUSION This system established an efficient and safe resource of pluripotent cells from autologous germline, and provide new avenues for regenerative medicine and animal cloning.
Collapse
Affiliation(s)
- Rui Wei
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyang Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Li Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Pei Z, Deng K, Xu C, Zhang S. The molecular regulatory mechanisms of meiotic arrest and resumption in Oocyte development and maturation. Reprod Biol Endocrinol 2023; 21:90. [PMID: 37784186 PMCID: PMC10544615 DOI: 10.1186/s12958-023-01143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
In human female primordial germ cells, the transition from mitosis to meiosis begins from the fetal stage. In germ cells, meiosis is arrested at the diplotene stage of prophase in meiosis I (MI) after synapsis and recombination of homologous chromosomes, which cannot be segregated. Within the follicle, the maintenance of oocyte meiotic arrest is primarily attributed to high cytoplasmic concentrations of cyclic adenosine monophosphate (cAMP). Depending on the specific species, oocytes can remain arrested for extended periods of time, ranging from months to even years. During estrus phase in animals or the menstrual cycle in humans, the resumption of meiosis occurs in certain oocytes due to a surge of luteinizing hormone (LH) levels. Any factor interfering with this process may lead to impaired oocyte maturation, which in turn affects female reproductive function. Nevertheless, the precise molecular mechanisms underlying this phenomenon has not been systematically summarized yet. To provide a comprehensive understanding of the recently uncovered regulatory network involved in oocyte development and maturation, the progress of the cellular and molecular mechanisms of oocyte nuclear maturation including meiosis arrest and meiosis resumption is summarized. Additionally, the advancements in understanding the molecular cytoplasmic events occurring in oocytes, such as maternal mRNA degradation, posttranslational regulation, and organelle distribution associated with the quality of oocyte maturation, are reviewed. Therefore, understanding the pathways regulating oocyte meiotic arrest and resumption will provide detailed insight into female reproductive system and provide a theoretical basis for further research and potential approaches for novel disease treatments.
Collapse
Affiliation(s)
- Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
14
|
Wu Z, Yang T, Ma H. Molecular mechanism of modified Huanglian Wendan decoction in the treatment of polycystic ovary syndrome. Medicine (Baltimore) 2023; 102:e33212. [PMID: 37058016 PMCID: PMC10101291 DOI: 10.1097/md.0000000000033212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 04/15/2023] Open
Abstract
To investigate the mechanism of modified Huanglian Wendan decoction in the intervention of polycystic ovary syndrome (PCOS) by network pharmacology and molecular docking. The ingredients and targets of modified Huanglian Wendan decoction were retrieved from the traditional Chinese medicine Systems Pharmacology database. Related targets of PCOS were screened by Comparative Toxicogenomics Database database. Cytoscape 3.7.2 (https://cytoscape.org/) was used to draw the target network diagram of "traditional Chinese medicine - ingredient - PCOS," STRING database was used to construct the target protein interaction network. NCA tool of Cystoscape 3.7.2 was used to carried out topology analysis on PPI network, core components and key targets were obtained. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were carried out for the intersection targets by David database. AutoDockTools 1.5.6 software (https://autodock.scripps.edu/) was used to conduct molecular docking verification of key components and key targets. Ninety-one ingredients of the modified Huanglian Wendan decoction and 23,075 diseases targets were obtained, 155 Intersection targets of the drug and disease were obtained by R language, Veen plot was drawn. Gene ontology enrichment analysis obtained 432 biological processes, 67 cell components, 106 molecular functions. Fifty-four Kyoto encyclopedia of genes and genomes enrichment pathways (P < .05) including tumor necrosis factor, hypoxia-induced factors-1, calcium, and drug metabolism-cytochrome P450 signaling pathway. Molecular docking showed quercetin, luteolin, kaempferol, and baicalein were stable in docking with core targets. Network pharmacology and molecular docking were used to preliminarily study the mechanism of action of modified Huanglian Wendan decoction in the treatment of PCOS, which laid foundation for future experimental research and clinical application.
Collapse
Affiliation(s)
- Zhaojing Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- First College of Clinical Medicine, Shandong University of Traditional Chinese, Medicine, Jinan, Shandong, China
| | - Tiantian Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongbo Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Wang C, Sun H, Davis JS, Wang X, Huo L, Sun N, Huang Q, Lv X, Wang C, He C, He C, Zhou Y, Wu J, Yang L, Hua G. FHL2 deficiency impairs follicular development and fertility by attenuating EGF/EGFR/YAP signaling in ovarian granulosa cells. Cell Death Dis 2023; 14:239. [PMID: 37015904 PMCID: PMC10073124 DOI: 10.1038/s41419-023-05759-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Female subfertility is an increasing reproductive issue worldwide, which is partially related to abnormal ovarian follicular development. Granulosa cells (GCs), by providing the necessary physical support and microenvironment for follicular development, play critical roles in maintaining female fertility. We previously showed that ectopic expression of four and a half LIM domains 2 (FHL2) promoted ovarian granulosa cell tumor progression. However, its function in follicular development and fertility remains unknown. Here, we confirmed that FHL2 is highly expressed in human and mouse ovaries. FHL2 immunosignals were predominantly expressed in ovarian GCs. A Fhl2 knockout (KO) mouse model was generated to examine its roles in follicular development and fertility. Compared with wildtype, knockout of Fhl2 significantly decreased female litter size and offspring number. Furthermore, Fhl2 deficiency reduced ovarian size and impaired follicular development. RNA-sequencing analysis of GCs isolated from either KO or WT mice revealed that, Fhl2 deletion impaired multiple biological functions and signaling pathways, such as Ovarian Putative Early Atresia Granulosa Cell, ErbB, Hippo/YAP, etc. In vitro studies confirmed that FHL2 silencing suppressed GCs growth and EGF-induced GCs proliferation, while its overexpression promoted GC proliferation and decreased apoptosis. Mechanistic studies indicated that FHL2, via forming complexes with transcriptional factors AP-1 or NF-κB, regulated Egf and Egfr expression, respectively. Besides, FHL2 depletion decreased YAP1 expression, especially the active form of YAP1 (nuclear YAP1) in GCs of growing follicles. EGF, serving as an autocrine/paracrine factor, not only induced FHL2 expression and nuclear accumulation, but also stimulated YAP1 expression and activation. Collectively, our study suggests that FHL2 interacts with EGFR and Hippo/YAP signaling to regulate follicular development and maintain fertility. This study illuminates a novel mechanism for follicular development and a potential therapeutic target to address subfertility.
Collapse
Affiliation(s)
- Chen Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Hui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Xiaojie Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Lijun Huo
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Nan Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Qianzhi Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Xiangmin Lv
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chunbo He
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Changjiu He
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Yang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Jiyun Wu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei province, 430070, China.
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR); Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
16
|
Choi Y, Jeon H, Brännström M, Akin JW, Curry TE, Jo M. A single-cell gene expression atlas of human follicular aspirates: Identification of leukocyte subpopulations and their paracrine factors. FASEB J 2023; 37:e22843. [PMID: 36934419 DOI: 10.1096/fj.202201746rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
Leukocytes are in situ regulators critical for ovarian function. However, little is known about leukocyte subpopulations and their interaction with follicular cells in ovulatory follicles, especially in humans. Single-cell RNA sequencing (scRNA-seq) was performed using follicular aspirates obtained from four IVF patients and identified 13 cell groups: one granulosa cell group, one thecal cell group, 10 subsets of leukocytes, and one group of RBC/platelet. RNA velocity analyses on five granulosa cell populations predicted developmental dynamics denoting two projections of differentiation states. The cell type-specific transcriptomic profiling analyses revealed the presence of a diverse array of leukocyte-derived factors that can directly impact granulosa cell function by activating their receptors (e.g., cytokines and secretory ligands) and are involved in tissue remodeling (e.g., MMPs, ADAMs, ADAMTSs, and TIMPs) and angiogenesis (e.g., VEGFs, PGF, FGF, IGF, and THBS1) in ovulatory follicles. Consistent with the findings from the scRNA-seq data, the leukocyte-specific expression of CD68, IL1B, and MMP9 was verified in follicle tissues collected before and at defined hours after hCG administration from regularly cycling women. Collectively, this study demonstrates that this data can be used as an invaluable resource for identifying important leukocyte-derived factors that promote follicular cell function, thereby facilitating ovulation and luteinization in women.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - James W Akin
- Bluegrass Fertility Center, Lexington, Kentucky, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
17
|
Loncová B, Fabová Z, Mlynček M, Sirotkin AV. Assessment of Epiregulin Effect and its Combination with Gonadotropins on Proliferation, Apoptosis, and Secretory Activity by Human Ovarian Cells. Reprod Sci 2023:10.1007/s43032-023-01205-z. [PMID: 36881337 DOI: 10.1007/s43032-023-01205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The release of epidermal growth factor ligand epiregulin (EREG) by human ovarian granulosa cells, its direct action on basic ovarian cell functions, and interrelationships with gonadotropins were investigated. We examined (1) the ovarian production of EREG (the time-dependent accumulation of EREG in the medium incubated with human ovarian granulosa cells, and (2) the effect of the addition of EREG (0, 1, 10, and 100 ng.ml-1) given alone or in combination with FSH or LH (100 ng.ml-1) on basic granulosa cells functions. Viability, proliferation (accumulation of PCNA and cyclin B1) and apoptosis (accumulation of bax and caspase 3), the release of steroid hormones (progesterone, testosterone, and estradiol), and prostaglandin E2 (PGE2) were analyzed by using the Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. A significant time-dependent accumulation of EREG in a medium cultured with human granulosa cells with a peak at 3 and 4 days was observed. The addition of EREG alone increased cell viability, proliferation, progesterone, testosterone, and estradiol release, decreased apoptosis, bud did not affect PGE2 release. The addition of either FSH or LH alone increased cell viability, proliferation, progesterone, testosterone, estradiol, and PGE2 release and decreased apoptosis. Furthermore, both FSH and LH mostly promoted the stimulatory action of EREG on granulosa cell functions. These results demonstrated, that EREG produced by ovarian cells can be an autocrine/paracrine stimulator of human ovarian cell functions. Furthermore, they demonstrate the functional interrelationship between EREG and gonadotropins in the control of ovarian functions.
Collapse
Affiliation(s)
- Barbora Loncová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia.
| | - Zuzana Fabová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia
| | - Miloš Mlynček
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia
| | - Alexander V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia
| |
Collapse
|
18
|
Human Chorionic Gonadotropin-Stimulated Interleukin-4-Induced-1 (IL4I1) Promotes Human Decidualization via Aryl Hydrocarbon Receptor. Int J Mol Sci 2023; 24:ijms24043163. [PMID: 36834576 PMCID: PMC9959871 DOI: 10.3390/ijms24043163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Decidualization is necessary for the successful establishment of early pregnancy in rodents and humans. Disturbed decidualization results in recurrent implantation failure, recurrent spontaneous abortion, and preeclampsia. Tryptophan (Trp), one of the essential amino acids in humans, has a positive effect on mammalian pregnancy. Interleukin 4-induced gene 1 (IL4I1) is a recently identified enzyme that can metabolize L-Trp to activate aryl hydrocarbon receptor (AHR). Although IDO1-catalyzed kynurenine (Kyn) from Trp has been shown to enhance human in vitro decidualization via activating AHR, whether IL4I1-catalyzed metabolites of Trp are involved in human decidualization is still unknown. In our study, human chorionic gonadotropin stimulates IL4I1 expression and secretion from human endometrial epithelial cells through ornithine decarboxylase-induced putrescine production. Either IL4I1-catalyzed indole-3-pyruvic acid (I3P) or its metabolite indole-3-aldehyde (I3A) from Trp is able to induce human in vitro decidualization by activating AHR. As a target gene of AHR, Epiregulin induced by I3P and I3A promotes human in vitro decidualization. Our study indicates that IL4I1-catalyzed metabolites from Trp can enhance human in vitro decidualization through AHR-Epiregulin pathway.
Collapse
|
19
|
Dellaqua TT, Vígaro RA, Janini LCZ, Dal Canto M, Renzini MM, Lodde V, Luciano AM, Buratini J. Neuregulin 1 (NRG1) modulates oocyte nuclear maturation during IVM and improves post-IVF embryo development. Theriogenology 2022; 195:209-216. [DOI: 10.1016/j.theriogenology.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
20
|
Li H, Chang HM, Li S, Klausen C, Shi Z, Leung PC. Characterization of the roles of amphiregulin and transforming growth factor β1 in microvasculature-like formation in human granulosa-lutein cells. Front Cell Dev Biol 2022; 10:968166. [PMID: 36092732 PMCID: PMC9448859 DOI: 10.3389/fcell.2022.968166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial-cadherin (VE-cadherin) is an essential component that regulates angiogenesis during corpus luteum formation. Amphiregulin (AREG) and transforming growth factor β1 (TGF-β1) are two intrafollicular factors that possess opposite functions in directing corpus luteum development and progesterone synthesis in human granulosa-lutein (hGL) cells. However, whether AREG or TGF-β1 regulates the VE-cadherin expression and subsequent angiogenesis in the human corpus luteum remains to be elucidated. Results showed that hGL cells cultured on Matrigel spontaneously formed capillary-like and sprout-like microvascular networks. Results of specific inhibitor treatment and small interfering RNA-mediated knockdown revealed that AREG promoteed microvascular-like formation in hGL cells by upregulating the VE-cadherin expression mediated by the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase1/2 (ERK1/2) signaling pathway. However, TGF-β1 suppressed microvascular-like formation in hGL cells by downregulating VE-cadherin expression mediated by the activin receptor-like kinase (ALK)5-Sma- and Mad-related protein (SMAD)2/3/4 signaling pathway. Collectively, this study provides important insights into the underlying molecular mechanisms by which TGF-β1 and AREG differentially regulate corpus luteum formation in human ovaries.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Hsun-Ming Chang, ; Peter C.K. Leung,
| | - Saijiao Li
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peter C.K. Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Hsun-Ming Chang, ; Peter C.K. Leung,
| |
Collapse
|
21
|
Yu X, Li Z, Zhao X, Hua L, Liu S, He C, Yang L, Davis JS, Liang A. Anti-Müllerian Hormone Inhibits FSH-Induced Cumulus Oocyte Complex In Vitro Maturation and Cumulus Expansion in Mice. Animals (Basel) 2022; 12:1209. [PMID: 35565634 PMCID: PMC9103408 DOI: 10.3390/ani12091209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Anti-Müllerian hormone (AMH) is secreted by the ovaries of female animals and exerts its biological effects through the type II receptor (AMHR2). AMH regulates follicular growth by inhibiting the recruitment of primordial follicles and reducing the sensitivity of antral follicles to FSH. Despite the considerable research on the actions of AMH in granulosa cells, the effect of AMH on the in vitro maturation of oocytes remains largely unknown. In the current study, we showed that AMH is only expressed in cumulus cells, while AMHR2 is produced in both cumulus cells and oocytes. AMH had no significant effect on COCs nuclear maturation, whereas it inhibited the stimulatory effects of FSH on COCs maturation and cumulus expansion. Moreover, AMH treatment effectively inhibited the positive effect of FSH on the mRNA expressions of Hyaluronan synthase 2 (Has2), Pentraxin 3 (Ptx3), and TNF-alpha-induced protein 6 (Tnfaip 6) genes in COCs. In addition, AMH significantly decreased the FSH-stimulated progesterone production, but did not change estradiol levels. Taken together, our results suggest that AMH may inhibit the effects of FSH-induced COCs in vitro maturation and cumulus expansion. These findings increase our knowledge of the functional role of AMH in regulating folliculogenesis.
Collapse
Affiliation(s)
- Xue Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
| | - Xinzhe Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
| | - Liping Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
| | - Shuanghang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
| | - Changjiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (Z.L.); (X.Z.); (L.H.); (S.L.); (C.H.); (L.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
| |
Collapse
|
22
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Smith OE, Roussel V, Morin F, Ongaro L, Zhou X, Bertucci MC, Bernard DJ, Murphy BD. Steroidogenic Factor 1 Regulation of the Hypothalamic-Pituitary-Ovarian Axis of Adult Female Mice. Endocrinology 2022; 163:6542939. [PMID: 35247045 PMCID: PMC8974829 DOI: 10.1210/endocr/bqac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/19/2022]
Abstract
The orphan nuclear receptor steroidogenic factor-1 (SF-1 or NR5A1) is an indispensable regulator of adrenal and gonadal formation, playing roles in sex determination, hypothalamic development, and pituitary function. This study aimed to identify the roles of SF-1 in postnatal female reproductive function. Using a progesterone receptor-driven Cre recombinase, we developed a novel murine model, characterized by conditional depletion of SF-1 [PR-Cre;Nr5a1f/f; conditional knockout (cKO)] in the hypothalamic-pituitary-gonadal axis. Mature female cKO were infertile due to the absence of ovulation. Reduced gonadotropin concentrations in the pituitary gland that were nevertheless sufficient to maintain regular estrous cycles were observed in mature cKO females. The cKO ovaries showed abnormal lipid accumulation in the stroma, associated with an irregular expression of cholesterol homeostatic genes such as Star, Scp2, and Acat1. The depletion of SF-1 in granulosa cells prevented appropriate cumulus oöphorus expansion, characterized by reduced expression of Areg, Ereg, and Ptgs2. Exogenous delivery of gonadotropins to cKO females to induce ovulation did not restore fertility and was associated with impaired formation and function of corpora lutea accompanied by reduced expression of the steroidogenic genes Cyp11a1 and Cyp19a1 and attenuated progesterone production. Surgical transplantation of cKO ovaries to ovariectomized control animals (Nr5a1f/f) resulted in 2 separate phenotypes, either sterility or apparently normal fertility. The deletion of SF-1 in the pituitary and in granulosa cells near the moment of ovulation demonstrated that this nuclear receptor functions across the pituitary-gonadal axis and plays essential roles in gonadotropin synthesis, cumulus expansion, and luteinization.
Collapse
Affiliation(s)
- Olivia E Smith
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint Hyacinthe, Québec, Canada
| | - Vickie Roussel
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint Hyacinthe, Québec, Canada
| | - Fanny Morin
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint Hyacinthe, Québec, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Micka C Bertucci
- School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Bruce D Murphy
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint Hyacinthe, Québec, Canada
- Correspondence: Bruce D. Murphy, PhD, Centre de Recherche en Reproduction et Fertilité, Université de Montréal, Saint-Hyacinthe, Québec, J2S 7C6, Canada. E-mail:
| |
Collapse
|
24
|
Geng T, Sun Y, Cheng L, Cao Y, Zhang M, Hong Z, Ma L, Zhang Y. Downregulation of LHCGR Attenuates COX-2 Expression and Induces Luteinized Unruptured Follicle Syndrome in Endometriosis. Front Endocrinol (Lausanne) 2022; 13:853563. [PMID: 35600595 PMCID: PMC9114297 DOI: 10.3389/fendo.2022.853563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
An association between endometriosis and luteinized unruptured follicle syndrome (LUFs) has long been identified. Although inactivating mutation of luteinizing hormone/choriogonadotropin receptor (LHGCR) results in LUFs, whether LHCGR contributes to promoting LUFs in endometriosis remains elusive. To investigate the effect of LHCGR signaling in the development of endometriosis-associated LUFs and dissect the underlying mechanism in vivo mouse endometriosis model was established to measure the effect on ovarian folliculogenesis. In vitro cultures of primary human GCs collected from patients undergoing in vitro fertilization were performed and treated with human chorionic gonadotropin (hCG), dibutyryl cyclic-AMP (db-cAMP), LHCGR or CCAAT/enhancer binding protein-α (C/EBPα) small interfering RNA to identify the potential mechanisms. KGN cell line was used to investigate the mechanistic features of transcriptional regulation. Results showed an increased incidence of LUFs was observed in mice with endometriosis. The expression of LHCGR was decreased in the GCs of endometriosis mice. In in vitro cell models, LHCGR signaling increased the expression of C/EBPα and cyclooxygenase-2(COX-2), while inhibiting C/EBPα mitigated the induced COX-2 expression. Mechanically, C/EBPα bounded to the promoter region of COX-2 and increased the transcriptional activity under the stimulation of hCG or db-cAMP. Taken together, this study demonstrated that the LHCGR signaling was reduced in GCs of endometriosis and resulted in a decrease in gonadotropin-induced COX-2 expression. Our study might provide new insights into the dysfunction of GCs in endometriosis.
Collapse
Affiliation(s)
- Ting Geng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifan Sun
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cheng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Cao
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanzhen Zhang,
| |
Collapse
|
25
|
Gholizadeh M, Esmaeili-Fard SM. Meta-analysis of genome-wide association studies for litter size in sheep. Theriogenology 2021; 180:103-112. [PMID: 34968818 DOI: 10.1016/j.theriogenology.2021.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 01/01/2023]
Abstract
Litter size and ovulation rate are important reproduction traits in sheep and have important impacts on the profitability of farm animals. To investigate the genetic architecture of litter size, we report the first meta-analysis of genome-wide association studies (GWAS) using 522 ewes and 564,377 SNPs from six sheep breeds. We identified 29 significant associations for litter size which 27 of which have not been reported in individual GWAS for each population. However, we could confirm the role of BMPR1B in prolificacy. Our gene set analysis discovered biological pathways related to cell signaling, communication, and adhesion. Functional clustering and enrichment using protein databases identified epidermal growth factor-like domain affecting litter size. Through analyzing protein-protein interaction data, we could identify hub genes like CASK, PLCB4, RPTOR, GRIA2, and PLCB1 that were enriched in most of the significant pathways. These genes have a role in cell proliferation, cell adhesion, cell growth and survival, and autophagy. Notably, identified SNPs were scattered on several different chromosomes implying different genetic mechanisms underlying variation of prolificacy in each breed. Given the different layers that make up the follicles and the need for communication and transfer of hormones and nutrients through these layers to the oocyte, the significance of pathways related to cell signaling and communication seems logical. Our results provide genetic insights into the litter size variation in different sheep breeds.
Collapse
Affiliation(s)
- Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Seyed Mehdi Esmaeili-Fard
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
26
|
Javadi M, Soleimani Rad J, Pashaiasl M, Farashah MSG, Roshangar L. The effects of plasma-derived extracellular vesicles on cumulus expansion and oocyte maturation in mice. Reprod Biol 2021; 22:100593. [PMID: 34906824 DOI: 10.1016/j.repbio.2021.100593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/31/2022]
Abstract
Cumulus cell expansion is required for the ovulation of a fertilizable oocyte. Extracellular vesicles (EVs) are bilayer-lipid membrane vesicles that may be found in a variety of bodily fluids and play an important role in biological processes. This study aimed to examine the effects of plasma-derived EVs on cumulus expansion and in vitro maturation (IVM) of the oocyte. EVswere isolated using ultracentrifugation from the plasma of female mice. The morphology and size of EVs were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Western blotting allowed us to identify CD63, CD81, CD9, and HSP70 protein markers of EVs; the expression of the genes related to cumulus cell expansion, including hyaluronan synthase 2 (Has2) and prostaglandinendoperoxide synthase 2 (Ptgs2), were assessed using real-time polymerase chain reaction. Plasma-derived EVs labeled with Dil dye were successfully incorporated with cumulus cells during IVM. Plasma-derived EVs significantly induced cumulus expansion and maturation of oocytes. The percentage of oocytes that reached the MII stage was significantly greater in the EVs treatment group compared with other groups. Although treatment with epidermal growth factor (EGF) significantly increased cumulus expansion in cumulus-oocyte complexes (COCs), the impact was less than that seen with plasma-derived EVs. Furthermore, EVs generated from plasma substantially enhanced Has2 and Ptgs2 mRNA expression in the cumulus-oocyte complex. This research indicates that EVs derived from plasma are capable of promoting cumulus expansion and oocyte maturation.
Collapse
Affiliation(s)
- Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Kim M, Hwang SU, Yoon JD, Lee J, Kim E, Cai L, Kim G, Choi H, Oh D, Hyun SH. Beneficial Effects of Neurotrophin-4 Supplementation During in vitro Maturation of Porcine Cumulus-Oocyte Complexes and Subsequent Embryonic Development After Parthenogenetic Activation. Front Vet Sci 2021; 8:779298. [PMID: 34869748 PMCID: PMC8632945 DOI: 10.3389/fvets.2021.779298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Neurotrophin-4 (NT-4) is a neurotrophic factor that plays an important role in follicular development and oocyte maturation. However, it is not yet known whether NT-4 is related to oocyte maturation and follicular development in pigs. This study aims to investigate the effects of NT-4 supplementation during in vitro maturation (IVM) of porcine oocytes and subsequent embryonic development after parthenogenetic activation (PA). First, NT-4 and its receptors (TrkB and p75NTR) were identified through fluorescent immunohistochemistry in porcine ovaries. NT-4 was mainly expressed in theca and granulosa cells; phospho-TrkB and total TrkB were expressed in theca cells, granulosa cells, and oocytes; p75NTR was expressed in all follicular cells. During IVM, the defined maturation medium was supplemented with various concentrations of NT-4 (0, 1, 10, and 100 ng/mL). After IVM, the nuclear maturation rate was significantly higher in the 10 and 100 ng/mL NT-4 treated groups than in the control. There was no significant difference in the intracellular reactive oxygen species levels in any group after IVM, but the 1 and 10 ng/mL NT-4 treatment groups showed a significant increase in the intracellular glutathione levels compared to the control. In matured cumulus cells, the 10 ng/mL NT-4 treatment group showed significantly increased cumulus expansion-related genes and epidermal growth factor (EGF) signaling pathway-related genes. In matured oocytes, the 10 ng/mL treatment group showed significantly increased expression of cell proliferation-related genes, antioxidant-related genes, and EGF signaling pathway-related genes. We also investigated the subsequent embryonic developmental competence of PA embryos. After PA, the cleavage rates significantly increased in the 10 and 100 ng/mL NT-4 treatment groups. Although there was no significant difference in the total cell number of blastocysts, only the 10 ng/mL NT-4 treatment group showed a higher blastocyst formation rate than the control group. Our findings suggest that supplementation with the 10 ng/mL NT-4 can enhance porcine oocyte maturation by interacting with the EGF receptor signaling pathway. In addition, we demonstrated for the first time that NT-4 is not only required for porcine follicular development, but also has beneficial effects on oocyte maturation and developmental competence of PA embryos.
Collapse
Affiliation(s)
- Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Gahye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
28
|
Shirafuta Y, Tamura I, Ohkawa Y, Maekawa R, Doi-Tanaka Y, Takagi H, Mihara Y, Shinagawa M, Taketani T, Sato S, Tamura H, Sugino N. Integrated Analysis of Transcriptome and Histone Modifications in Granulosa Cells During Ovulation in Female Mice. Endocrinology 2021; 162:6309636. [PMID: 34171084 DOI: 10.1210/endocr/bqab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/14/2022]
Abstract
The ovulatory luteinizing hormone (LH) surge induces rapid changes of gene expression and cellular functions in granulosa cells (GCs) undergoing luteinization. However, it remains unclear how the changes in genome-wide gene expression are regulated. H3K4me3 histone modifications are involved in the rapid alteration of gene expression. In this study, we investigated genome-wide changes of transcriptome and H3K4me3 status in mouse GCs undergoing luteinization. GCs were obtained from mice treated with equine chorionic gonadotropin (hCG) before, 4 hours, and 12 hours after human chorionic gonadotropin injection. RNA-sequencing identified a number of upregulated and downregulated genes, which could be classified into 8 patterns according to the time-course changes of gene expression. Many genes were transiently upregulated or downregulated at 4 hours after hCG stimulation. Gene Ontology terms associated with these genes included steroidogenesis, ovulation, cumulus-oocyte complex (COC) expansion, angiogenesis, immune system, reactive oxygen species (ROS) metabolism, inflammatory response, metabolism, and autophagy. The cellular functions of DNA repair and cell growth were newly identified as being activated during ovulation. Chromatin immunoprecipitation-sequencing revealed a genome-wide and rapid change in H3K4me3 during ovulation. Integration of transcriptome and H3K4me3 data identified many H3K4me3-associated genes that are involved in steroidogenesis, ovulation, COC expansion, angiogenesis, inflammatory response, immune system, ROS metabolism, lipid and glucose metabolism, autophagy, and regulation of cell size. The present results suggest that genome-wide changes in H3K4me3 after the LH surge are associated with rapid changes in gene expression in GCs, which enables GCs to acquire a lot of cellular functions within a short time that are required for ovulation and luteinization.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Haruka Takagi
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Yumiko Mihara
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
29
|
Khogali MK, Wen K, Jauregui D, Liu L, Zhao M, Gong D, Geng T. Uterine structure and function contributes to the formation of the sandpaper-shelled eggs in laying hens. Anim Reprod Sci 2021; 232:106826. [PMID: 34403835 DOI: 10.1016/j.anireprosci.2021.106826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
The avian eggshell is formed in the uterus, and eggshell quality usually decreases markedly in the late phase of hen laying cycles. Production of sandpaper-shelled eggs (SE), a category of eggs with relatively less eggshell quality, causes a great economic loss. Underlying mechanisms of SE formation, however, remain unclear. For the present study, it was hypothesized that alterations in uterine structure and function contribute to SE formation. To test this hypothesis, uterine samples were collected from 450-day-old hens that produced normal eggs (NE) and SE (based on 2-week-long assessments, n = 10) for histomorphological and transcriptome analyses. Compared with the NE group, uteri of the SE group were apparently atrophied. Furthermore, a total of 211 differentially expressed genes (DEGs) were identified in the uteri of hens of the two groups. These DEGs were clustered into 145 gene ontology terms (FDR < 0.05) and enriched in 12 KEGG pathways (P < 0.10), which are primarily related to organ morphogenesis and development, cell growth, differentiation and death, ion transport, endocrine and cell communication, immune response, and corticotropin-releasing hormones. In particular, corticotropin may be an important factor in SE formation because of effects on ion transport. Furthermore, as indicated by lesser abundances of relevant mRNA transcripts, the lesser expression of genes related to ion transport and matrix proteins also contribute to SE production because of effects on eggshell formation. In conclusion, results from this study revealed there were structural and functional differences in the hen uterus in NE and SE groups.
Collapse
Affiliation(s)
- Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, 13314, Sudan
| | - Kang Wen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Diego Jauregui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
30
|
Allais A, Albert O, Lefèvre PLC, Wade MG, Hales BF, Robaire B. In Utero and Lactational Exposure to Flame Retardants Disrupts Rat Ovarian Follicular Development and Advances Puberty. Toxicol Sci 2021; 175:197-209. [PMID: 32207525 DOI: 10.1093/toxsci/kfaa044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brominated flame retardants (BFRs), including polybrominated diphenyl ethers and hexabromocyclododecane, leach out from consumer products into the environment. Exposure to BFRs has been associated with effects on endocrine homeostasis. To test the hypothesis that in utero and lactational exposure to BFRs may affect the reproductive system of female offspring, adult female Sprague Dawley rats were fed diets formulated to deliver nominal doses (0, 0.06, 20, or 60 mg/kg/day) of a BFR dietary mixture mimicking the relative congener levels in house dust from prior to mating until weaning. Vaginal opening and the day of first estrus occurred at a significantly earlier age among offspring from the 20 mg/kg/day BFR group, indicating that the onset of puberty was advanced. Histological analysis of ovaries from postnatal day 46 offspring revealed an increase in the incidence of abnormal follicles. A toxicogenomic analysis of ovarian gene expression identified upstream regulators, including HIF1A, CREB1, EGF, the β-estradiol, and PPARA pathways, predicted to be downregulated in the 20 or 60 mg/kg/day group and to contribute to the gene expression patterns observed. Thus, perinatal exposure to BFRs dysregulated ovarian folliculogenesis and signaling pathways that are fundamental for ovarian function in the adult.
Collapse
Affiliation(s)
- Adélaïde Allais
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Océane Albert
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Pavine L C Lefèvre
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Michael G Wade
- Environmental Health Sciences and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Systematic Analysis of Long Noncoding RNA and mRNA in Granulosa Cells during the Hen Ovulatory Cycle. Animals (Basel) 2021; 11:ani11061533. [PMID: 34070248 PMCID: PMC8225051 DOI: 10.3390/ani11061533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Chicken is one of the most economically important farm poultry, and providing many food products, such as meat and eggs for human consumption. However, follicle transcriptome studies in chickens with timepoints relating to changes in luteinizing hormone level remain unknown. In this study, the largest preovulatory follicle of chicken underwent the early, middle, and terminal stages of ovulatory cycle. Our work provides a comprehensive analysis of lncRNAs and mRNAs in chicken granulosa cells during the ovulatory cycle. A total of 12,479 mRNAs and 7528 lncRNAs were identified among the three stages. Thousands of lncRNAs were annotated, and the most differentially abundant genes were detected in the luteinizing hormone surge stage. Functional features of the lncRNAs and mRNAs at each stage were revealed, which was also associated with the changes in serum luteinizing hormone level. Especially, genes related to oxidative stress, steroids regulation, and inflammatory process were enriched in the luteinizing hormone surge stage, The comprehensive data generated in this study provides the foundation for future investigations to improve the reproductive performance of chickens and explore the mechanisms responsible for female ovarian diseases. Abstract Long non-coding RNAs (lncRNAs) and mRNAs are temporally expressed during chicken follicle development. However, follicle transcriptome studies in chickens with timepoints relating to changes in luteinizing hormone (LH) levels are rare. In this study, gene expression in Rohman layers was investigated at three distinct stages of the ovulatory cycle: zeitgeber time 0 (ZT0, 9:00 a.m.), zeitgeber time 12 (ZT12, 9:00 p.m.), and zeitgeber time 20 (ZT20, 5:00 a.m.) representing the early, middle, and LH surge stages, respectively, of the ovulatory cycle. Gene expression profiles were explored during follicle development at ZT0, ZT12, and ZT20 using Ribo-Zero RNA sequencing. The three stages were separated into two major stages, including the pre-LH surge and the LH surge stages. A total of 12,479 mRNAs and 7528 lncRNAs were identified among the three stages, and 4531, 523 differentially expressed genes (DEGs) and 2367, 211 differentially expressed lncRNAs (DELs) were identified in the ZT20 vs. ZT12, and ZT12 vs. ZT0, comparisons. Functional enrichment analysis revealed that genes involved in cell proliferation and metabolism processes (lipid-related) were mainly enriched in the ZT0 and ZT12 stages, respectively, and genes related to oxidative stress, steroids regulation, and inflammatory process were enriched in the ZT20 stage. These findings provide the basis for further investigation of the specific genetic and molecular functions of follicle development in chickens.
Collapse
|
32
|
Lora J, Weskamp G, Li TM, Maretzky T, Shola DTN, Monette S, Lichtenthaler SF, Lu TT, Yang C, Blobel CP. Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. J Biol Chem 2021; 296:100733. [PMID: 33957124 PMCID: PMC8191336 DOI: 10.1016/j.jbc.2021.100733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a cell-surface metalloprotease that serves as the principle sheddase for tumor necrosis factor α (TNFα), interleukin-6 receptor (IL-6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17Δcyto). Homozygous Adam17Δcyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17Δcyto mice resembled Adam17−/− mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17Δcyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17Δcyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function.
Collapse
Affiliation(s)
- Jose Lora
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Thorsten Maretzky
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dorjee T N Shola
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Sloan-Kettering Institute, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Technical University of Munich, Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Technical University of Munich, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Chingwen Yang
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Carl P Blobel
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany; Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
33
|
Yin Y, Mao Y, Liu A, Shu L, Yuan C, Cui Y, Hou Z, Liu J. Insufficient Cumulus Expansion and Poor Oocyte Retrieval in Endometriosis-Related Infertile Women. Reprod Sci 2021; 28:1412-1420. [PMID: 33409880 DOI: 10.1007/s43032-020-00410-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/22/2020] [Indexed: 11/25/2022]
Abstract
Endometriosis (EMs) is a common cause for female infertility, leading to the need for in vitro fertilization (IVF). In clinics, we found the operative oocyte retrieval to be more or less difficult in women with EMs. We hypothesized that EMs may be involved in the insufficient cumulus expansion that partially explained the lower oocyte retrieval in EMs-related infertile women undergoing assisted reproductive technology (ART). To explore whether the insufficient cumulus expansion exists in EMs-related infertile women and whether there is a possible relationship between the insufficient cumulus expansion and the clinical phenomenon of difficulty in oocyte retrieval. Those infertile women undergoing IVF recorded in our database between January 2013 and October 2017 were included. The expression levels of cumulus expansion-related genes (HAS2/PTGS2/PTX3/TNFAIP6) in the cumulus cells (CCs) from 19 infertile women with EMs and 24 controls were analyzed by real-time PCR. After that, 635 women with EMs-associated infertility (the EMs group) and 4634 women with male factor-associated infertility (the control group) were included in the retrospective analysis. The clinical outcomes were compared between the two groups. The relative mRNA levels of cumulus expansion-related genes were significantly decreased in the CCs from those infertile women with EMs when compared to the control group (all p < 0.05), especially the expression of PTGS2. The mean oocyte retrieval rates (proportion of obtained oocytes in punctured follicles) were (76.33 ± 2.58)% and (71.80 ± 0.58)% (p < 0.01). The mean numbers of flushing times per follicle were 1.11 ± 0.65 and 3.86 ± 1.53 (p < 0.001). The lower expression of cumulus expansion-related genes in CCs suggests the insufficient cumulus expansion in EMs-related infertile women, which partially explains a possible mechanism related to poor oocyte retrieval.
Collapse
Affiliation(s)
- Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yundong Mao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Anthony Liu
- Life IVF Center, 3500 Barranca Pkwy, Suite 300, Irvine, CA, 92608, USA
| | - Li Shu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chun Yuan
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhen Hou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
34
|
Zhang H, Lu S, Xu R, Tang Y, Liu J, Li C, Wei J, Yao R, Zhao X, Wei Q, Ma B. Mechanisms of Estradiol-induced EGF-like Factor Expression and Oocyte Maturation via G Protein-coupled Estrogen Receptor. Endocrinology 2020; 161:5929646. [PMID: 33068422 DOI: 10.1210/endocr/bqaa190] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/18/2022]
Abstract
Estrogen is an important modulator of reproductive activity through nuclear receptors and G protein-coupled estrogen receptor (GPER). Here, we observed that both estradiol and the GPER-specific agonist G1 rapidly induced cyclic adenosine monophosphate (cAMP) production in cumulus cells, leading to transient stimulation of phosphorylated cAMP response element binding protein (CREB), which was conducive to the transcription of epidermal growth factor (EGF)-like factors, amphiregulin, epiregulin, and betacellulin. Inhibition of GPER by G15 significantly reduced estradiol-induced CREB phosphorylation and EGF-like factor gene expression. Consistently, the silencing of GPER expression in cultured cumulus cells abrogated the estradiol-induced CREB phosphorylation and EGF-like factor transcription. In addition, the increase in EGF-like factor expression in the cumulus cells is associated with EGF receptor (EFGR) tyrosine kinase phosphorylation and extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Furthermore, we demonstrated that GPER-mediated phosphorylation of EGFR and ERK1/2 was involved in reduced gap junction communication, cumulus expansion, increased oocyte mitochondrial activity and first polar body extrusion. Overall, our study identified a novel function for estrogen in regulating EGFR activation via GPER in cumulus cells during oocyte maturation.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jie Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Juncai Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ru Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
35
|
Effects of oxygen concentrations on developmental competence and transcriptomic profile of yak oocytes. ZYGOTE 2020; 28:459-469. [PMID: 32772955 DOI: 10.1017/s0967199420000337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxygen concentration influences oocyte quality and subsequent embryo development, but it remains unclear whether oxygen concentrations affect the developmental competence and transcriptomic profile of yak oocytes. In this study, we investigated the effects of different oxygen concentrations (5% versus 20%) on the developmental competence, reactive oxygen species (ROS) levels, glutathione (GSH) content, and transcriptomic profile of yak oocytes. The results showed that a low oxygen concentration significantly increased the maturation rate of yak oocytes (81.2 ± 2.2% vs 75.9 ± 1.3%) and the blastocyst quality of yak in vitro fertilized embryos. Analysis of ROS and GSH showed that a low oxygen concentration reduced ROS levels and increased the content of GSH (75.05 ± 7.1 ng/oocyte vs 50.63 ± 5.6 ng/oocyte). Furthermore, transcriptomic analysis identified 120 differentially expressed genes (DEGs) between the two groups of oocytes. Gene enrichment analysis of the DEGs indicated multiple cellular processes, including oxidative phosphorylation, transcription regulation, mitochondrial regulation, oestrogen signalling pathway, HIF-1 signalling pathway, TNF signalling pathway, were involved in the response to oxygen concentration alterations. Taken together, these results indicated that a low oxygen concentration improved the developmental competence of yak oocytes.
Collapse
|
36
|
Luo Y, Zhang R, Gao J, Wang Y, Zhang W, Qing S. The localization and expression of epidermal growth factor and epidermal growth factor receptor in bovine ovary during oestrous cycle. Reprod Domest Anim 2020; 55:822-832. [PMID: 32330337 DOI: 10.1111/rda.13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor (EGF) is one of the important regulatory factors of EGF family. EGF has been indicated to effectively inhibit the apoptosis of follicular cells, to promote the proliferation of granulosa cells and the maturation of oocytes, and to induce ovulation process via binding to epidermal growth factor receptor (EGFR). However, little is known about the distribution and expression of EGF and EGFR in cattle ovary especially during oestrous cycle. In this study, the localization and expression rule of EGF and EGFR in cattle ovaries of follicular phase and luteal phase at different time points in oestrous cycle were investigated by using IHC and real-time qPCR. The results showed that EGF and EGFR in cattle ovary were mainly expressed in granulosa cells, cumulus cells, oocytes, zona pellucida, follicular fluid and theca folliculi externa of follicles. The protein and mRNA expression of EGF/EGFR in follicles changed regularly with the follicular growth wave both in follicular and in luteal phase ovaries. In follicular phase ovaries, the protein expression of EGF and EGFR was higher in antral follicles than that of those in other follicles during follicular growth stage, and the mRNA expression of EGFR was also increased in stage of dominant follicle selection. However, in luteal phase ovaries, the growth of follicles was impeded during corpus luteum development under the action of progesterone secreted by granular lutein cell. The mRNA and protein expressions of EGF and EGFR in ovarian follicles during oestrous cycle indicate that they play a role in promoting follicular development in follicular growth waves and mediating the selection process of dominant follicles.
Collapse
Affiliation(s)
- Yuru Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Beijing Shunxin Xinyuan Research Institute of Cattle Breeding, Beijing, China
| | - Ruiqi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yali Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
37
|
Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One 2020; 15:e0229043. [PMID: 32182244 PMCID: PMC7077809 DOI: 10.1371/journal.pone.0229043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oocyte in vitro maturation can be improved by mimicking the intra-follicular environment. Oocyte, cumulus cells, granulosa cells, and circulating factors act as meiotic regulators in follicles and maintain oocyte in the meiotic phase until oocyte becomes competent and ready to be ovulated. In a randomized experimental design, an ovine model was used to optimize the standard in vitro maturation media by Granulosa secreted factors. At first, the development capacity of oocyte derived from medium (>4 to 6 mm) and small (2 to ≤4 mm) size follicles was determined. Differential gene expression of granulosa secreted factors and their receptors were compared between the cumulus cells of the two groups. Then, the best time and concentration for arresting oocytes at the germinal vesicle stage by natriuretic peptide type C (CNP) were determined by nuclear staining in both groups. Oocyte quality was further confirmed by calcein uptake and gene expression. The developmental competence of cumulus oocyte complexes derived from small size follicles that were cultured in the presence of CNP in combination with amphiregulin (AREG) and prostaglandin E2 (PGE2) for 24 h was determined. Finally, embryo quality was specified by assessing expressions of NANOG, SOX2, CDX2, OCT4, and TET1. The cumulus oocyte complexes derived from small size follicles had a lower capacity to form blastocyst in comparison with cumulus oocyte complexes derived from medium size follicles. Prostaglandin E receptor 2 and prostaglandin-endoperoxide synthase 2 had significantly lower expression in cumulus cells derived from small size follicles in comparison with cumulus cells derived from medium size follicles. Natriuretic peptide type C increased the percentage of cumulus oocyte complexes arresting at the germinal vesicle stage in both oocytes derived from medium and small follicles. Gap junction communication was also improved in the presence of natriuretic peptide type C. In oocytes derived from small size follicles; best blastocyst rates were achieved by sequential exposure of cumulus oocyte complexes in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)] and [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. Increased SOX2 expression was observed in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)], while decreased OCT4 expression was observed in [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. It seems that the natriuretic peptide type C modulates meiotic progression, and oocyte development is probably mediated by amphiregulin and prostaglandin E2. These results may provide an alternative IVM method to optimize in vitro embryo production in sheep and subsequently for humans.
Collapse
|
38
|
Wu Y, Xiao H, Pi J, Zhang H, Pan A, Pu Y, Liang Z, Shen J, Du J. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. Cell Cycle 2019; 18:2742-2756. [PMID: 31465245 DOI: 10.1080/15384101.2019.1656952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Follicles develop into preovulatory follicles during folliculogenesis and the majority of small yellow follicles become atretic and gets reabsorbed. In this study, based the RNA-seq results of duck ovary, epidermal growth factor receptor (EGFR) was selected as a candidate gene in follicular development and the role was explored. The results demonstrated that EGFR-P8 was the quail EGFR core promoter. It had an E2F4 binding site within EGFR core promoter. E2F4 overexpression significantly increased EGFR expression in quail granulosa cells (GCs). However, the effect was abolished when the GCs were treated with corynoxeine, an inhibitor of the mitogen-activated protein kinase/extracellular regulated protein kinase (MAPK/ERK) signaling pathway. Moreover, luciferase reporter assay and chromatin immunoprecipitation experiments showed that E2F4 upregulated the expression of EGFR expression, which increased E2 and P4 production. In addition, EGFR regulated GCs proliferation and affected follicular development. Taken together, our findings suggested that EGFR, which was regulated by E2F4, enhanced the expression of MAPK/ERK pathway components and follicular development. These results provided an important basis for an improved understanding of the MAPK/ERK pathway and new insight into the development of quail follicles.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China.,Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province , Wuhan , China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science , Wuhan , China
| |
Collapse
|
39
|
Abstract
Neuregulin-1 (NRG1) has been shown to be associated with the regulation of inflammation and ovulation. The aim of this study was to investigate the relationship between serum NRG1 levels and various clinical and metabolic parameters in women with polycystic ovary syndrome (PCOS). This case-controlled study included 38 women with PCOS and 46 age and body mass index (BMI)-matched controls without PCOS. The serum NRG1 levels of the women with PCOS were found to be significantly lower compared to the control group. The high sensitivity C-reactive protein (hs-CRP) levels of the PCOS subjects were significantly higher than in the control group. The circulating NRG1 levels were negatively correlated with a homeostasis model assessment of insulin resistance (HOMA-IR) and the hs-CRP in the PCOS group. There is no significant correlation between the circulating NRG1 levels and the serum insulin in the PCOS group. There was a trend toward high NRG1 levels in the PCOS subjects with high BMI, but the difference failed to reach a statistical significance. Decreased NRG1 levels in PCOS subjects may be associated with insulin resistance and a low-grade chronic inflammation. Impact statement What is already known on this subject? Although there have been many studies related to NRG1, we could not find any study explaining the relationship between NRG1 and PCOS. This study provides first and novel insights into the relationship between serum NRG1 levels and the insulin resistance in women with PCOS. What do the results of this study add? A decline in the NRG1 levels in PCOS may be associated with insulin resistance and a low-grade chronic inflammation. What are the implications of these findings for clinical practice and/or further research? Decreased NRG1 levels may play an important role in the reproductive and endocrine properties of PCOS. We think that NRG1 research may be contribute to the clarification of PCOS pathophysiology. Future research investigating NRG1 levels in obese and non-obese cases, as well as in ovulatory and anovulatory PCOS patients, will make a significant contribution to the resolution of the mystery under PCOS aetiology.
Collapse
Affiliation(s)
- Haldun Arpacı
- a Department of Obstetrics and Gynecology, School of Medicine , Kafkas University , Kars , Turkey
| |
Collapse
|
40
|
Nuttinck F. Oocyte related factors impacting on embryo quality: relevance for in vitro embryo production. Anim Reprod 2018; 15:271-277. [PMID: 34178150 PMCID: PMC8202467 DOI: 10.21451/1984-3143-ar2018-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The outcome of pregnancy is closely linked to early events that occur during the onset of embryogenesis.
The first stages in embryonic development are mainly governed by the storage of maternal factors
present in the oocyte at the time of fertilisation. In this review, we outline the different
classes of oocyte transcripts that may be involved in activation of the embryonic genome as
well as those associated with epigenetic reprogramming, imprinting maintenance or the control
of transposon mobilisation during preimplantation development. We also report the influence
of cumulus-oocyte crosstalk during the maturation process on the oocyte transcriptome and
how in vitro procedures can affect these interactions.
Collapse
|
41
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
42
|
Umehara T, Kawashima I, Kawai T, Hoshino Y, Morohashi KI, Shima Y, Zeng W, Richards JS, Shimada M. Neuregulin 1 Regulates Proliferation of Leydig Cells to Support Spermatogenesis and Sexual Behavior in Adult Mice. Endocrinology 2016; 157:4899-4913. [PMID: 27732090 PMCID: PMC5133346 DOI: 10.1210/en.2016-1478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult Leydig cells are derived from proliferating stem/progenitor Leydig cells in the infant testis and subsequent differentiation to steroidogenic cells in adult mice. Leydig cell proliferation in the infant testis occurs primarily in response to increased levels of LH that induce Leydig cell expression of neuregulin 1 (NRG1). Depletion of NRG1 in Nrg1 mutant mice (Nrg1flox;flox;Cyp19a1Cre mice) dramatically reduces Leydig cell proliferation in the infant testes, leading to a reduction of testis weight, epididymial weight, and serum T in the adult mutant mice. The mutant mice are subfertile due to impaired sexual behavior and abnormal elongation of the spermatogenic cells. These defects were reversed by T treatment of the mutant mice in vivo. Furthermore, NRG1 alone induces the proliferation of Leydig cells in cultures of infant (d 10) testes obtained from mutant mice. Collectively these results show that LH induction of NRG1 directly drives the proliferation of Leydig cells in the infant testis, leading to an obligatory number of adult Leydig cells required for the production of sufficient androgen to support and maintain spermatogenesis and sexual behavior of adult male mice.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ikko Kawashima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Tomoko Kawai
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yumi Hoshino
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ken-Ichirou Morohashi
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yuichi Shima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Wenxian Zeng
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Masayuki Shimada
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|