1
|
Mondal H, Silvia DDG, Emerson IA, Chandrasekaran N, Mukherjee A, Thomas J. Antibacterial activity of a novel compound isolated from Bacillus licheniformis for treating bacterial infections in fishes: An in-silico approach. Mol Cell Biochem 2023; 478:2609-2620. [PMID: 36894690 DOI: 10.1007/s11010-023-04687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Aeromonas hydrophila is a fish pathogen which is widely associated with diseases related to freshwater fishes. Vibrio parahemolyticus is a major globally emerging marine pathogen. Seven novel compounds were extracted from the ethyl acetate extract of Bacillus licheniformis, a novel marine bacterium isolated from marine actinomycetes. The compounds were identified using Gas Chromatography-Mass Spectroscopy (GC-MS). Only one bioactive compound having potent antibacterial activity was virtually screened to understand its drug-like property according to Lipinski's rule. The core proteins, 3L6E and 3RYL from the pathogens, A. hydrophila and V. parahemolyticus were targeted for drug discovery. In the present in-silico approach, Phenol,2,4-Bis(1,1-Dimethylethyl) a potent bioactive compound present in Bacillus licheniformis was used to prevent the infection due to the two pathogens. Further, using this bioactive compound, molecular docking was done to block their specific target proteins. This bioactive compound satisfied all the five rules of Lipinski. Molecular docking result revealed the best binding efficacy of Phenol,2,4-Bis(1,1-Dimethylethyl) against 3L6E and 3RYL with - 4.24 kcal/mol and - 4.82 kcal/mol, respectively. Molecular dynamics (MD) simulations were also executed to determine the binding modes as well as the stability of the protein-ligand docking complexes in the dynamic structure. The in vitro toxicity analysis of this potent bioactive compound against Artemia salina was carried out, revealing the non-toxic nature of B. licheniformis ethyl acetate extract. Thus, the bioactive compound of B. licheniformis was found to be a potent antibacterial agent against A. hydrophila and V. parahemolyticus.
Collapse
Affiliation(s)
- Haimanti Mondal
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - D Delsy Gnana Silvia
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - I Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Natarajan Chandrasekaran
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - John Thomas
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
El-Sayed SAES, El-Alfy ES, Baghdadi HB, Sayed-Ahmed MZ, Alqahtani SS, Alam N, Ahmad S, Ali MS, Igarashi I, Rizk MA. Antiparasitic activity of FLLL-32 against four Babesia species, B. bovis, B. bigemina, B. divergens and B. caballi, and one Theileria species, Theileria equi in vitro, and Babesia microti in mice. Front Pharmacol 2023; 14:1278451. [PMID: 38027032 PMCID: PMC10651744 DOI: 10.3389/fphar.2023.1278451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: FLLL-32, a synthetic analog of curcumin, is a potent inhibitor of STAT3's constitutive activation in a variety of cancer cells, and its anticancer properties have been demonstrated both in vitro and in vivo. It is also suggested that it might have other pharmacological activities including activity against different parasites. Aim: This study therefore investigated the in vitro antiparasitic activity of FLLL-32 against four pathogenic Babesia species, B. bovis, B. bigemina, B. divergens, and B. caballi, and one Theileria species, Theileria equi. In vivo anti-Babesia microti activity of FLLL-32 was also evaluated in mice. Methods: The FLLL-32, in the growth inhibition assay with a concentration range (0.005-50 μM), was tested for it's activity against these pathogens. The reverse transcription PCR (RT-PCR) assay was used to evaluate the possible effects of FLLL-32 treatment on the mRNA transcription of the target B. bovis genes including S-adenosylhomocysteine hydrolase and histone deacetylase. Results: The in vitro growth of B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi was significantly inhibited in a dose-dependent manner (in all cases, p < 0.05). FLLL-32 exhibits the highest inhibitory effects on B. bovis growth in vitro, and it's IC50 value against this species was 9.57 μM. The RT-PCR results showed that FLLL-32 inhibited the transcription of the B. bovis S-adenosylhomocysteine hydrolase gene. In vivo, the FLLL-32 showed significant inhibition (p < 0.05) of B. microti parasitemia in infected mice with results comparable to that of diminazene aceturate. Parasitemia level in B. microti-infected mice treated with FLLL-32 from day 12 post infection (pi) was reduced to reach zero level at day 16 pi when compared to the infected non-treated mice. Conclusion: The present study demonstrated the antibabesial properties of FLLL-32 and suggested it's usage in the treatment of babesiosis especially when utilized in combination therapy with other antibabesial drugs.
Collapse
Affiliation(s)
- Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed Z. Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Md. Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Malak N, Alotaibi BS, Khan A, Khan A, Ullah S, Nasreen N, Niaz S, Chen CC. Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus. Molecules 2023; 28:molecules28083606. [PMID: 37110838 PMCID: PMC10145301 DOI: 10.3390/molecules28083606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Ticks and tick-borne diseases constitute a substantial hazard to the livestock industry. The rising costs and lack of availability of synthetic chemical acaricides for farmers with limited resources, tick resistance to current acaricides, and residual issues in meat and milk consumed by humans further aggravate the situation. Developing innovative, eco-friendly tick management techniques, such as natural products and commodities, is vital. Similarly, searching for effective and feasible treatments for tick-borne diseases is essential. Flavonoids are a class of natural chemicals with multiple bioactivities, including the inhibition of enzymes. We selected eighty flavonoids having enzyme inhibitory, insecticide, and pesticide properties. Flavonoids' inhibitory effects on the acetylcholinesterase (AChE1) and triose-phosphate isomerase (TIM) proteins of Rhipicephalus microplus were examined utilizing a molecular docking approach. Our research demonstrated that flavonoids interact with the active areas of proteins. Seven flavonoids (methylenebisphloridzin, thearubigin, fortunellin, quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), quercetagetin-7-O-(6-O-p-coumaroyl-β-glucopyranoside), rutin, and kaempferol 3-neohesperidoside) were the most potent AChE1 inhibitors, while the other three flavonoids (quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), isorhamnetin, and liquiritin) were the potent inhibitors of TIM. These computationally-driven discoveries are beneficial and can be utilized in assessing drug bioavailability in both in vitro and in vivo settings. This knowledge can create new strategies for managing ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Nosheen Malak
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Bader S Alotaibi
- Department of Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 15273, Saudi Arabia
| | - Afshan Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Adil Khan
- Department of Botany and Zoology, Bacha Khan University, Charsadda 24420, Pakistan
| | - Shakir Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Chien-Chin Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Jamil SNH, Ali AH, Feroz SR, Lam SD, Agustar HK, Mohd Abd Razak MR, Latip J. Curcumin and Its Derivatives as Potential Antimalarial and Anti-Inflammatory Agents: A Review on Structure-Activity Relationship and Mechanism of Action. Pharmaceuticals (Basel) 2023; 16:609. [PMID: 37111366 PMCID: PMC10146798 DOI: 10.3390/ph16040609] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Curcumin, one of the major ingredients of turmeric (Curcuma longa), has been widely reported for its diverse bioactivities, including against malaria and inflammatory-related diseases. However, curcumin's low bioavailability limits its potential as an antimalarial and anti-inflammatory agent. Therefore, research on the design and synthesis of novel curcumin derivatives is being actively pursued to improve the pharmacokinetic profile and efficacy of curcumin. This review discusses the antimalarial and anti-inflammatory activities and the structure-activity relationship (SAR), as well as the mechanisms of action of curcumin and its derivatives in malarial treatment. This review provides information on the identification of the methoxy phenyl group responsible for the antimalarial activity and the potential sites and functional groups of curcumin for structural modification to improve its antimalarial and anti-inflammatory actions, as well as potential molecular targets of curcumin derivatives in the context of malaria and inflammation.
Collapse
Affiliation(s)
- Siti Nur Hidayah Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institute of Health (NIH) Complex, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
5
|
Shah AP, Hura N, Babu NK, Roy N, Rao VK, Paul A, Roy PK, Singh S, Guchhait SK. A "Core-Linker-Polyamine (CLP)" strategy enabling rapid discovery of antileishmanial aminoalkyl-quinoline-carboxamides that target oxidative stress mechanism. ChemMedChem 2022; 17:e202200109. [PMID: 35638162 DOI: 10.1002/cmdc.202200109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Indexed: 11/06/2022]
Abstract
A "Core-Linker-Polyamine (CLP)" strategy has been exploited to develop new antileishmanial agents. It involves the linker-based assembly of alkyl-polyamine side chain as a potential pharmacophore motif with a privileged heterocyclic motif, 4-arylquinoline. A series of aminoalkyl 4-arylquinoline-2-carboxamides and their analogs were synthesized and tested against L. donovani promastigotes. Among all synthesized derivatives, 10 compounds showed significant antipromastigote activities with more efficacy (IC 50 : 4.75-8 µ M) than an antileishmanial oral drug Miltefosine (IC 50 : 8.9±1.55 µ M). Most active compounds 9a and 9b , displayed negligible cytotoxicity towards human monocytic (THP-1) macrophages. The compounds show antileishmanial activity by generating mitochondrial superoxide radicals. However, they did not show interference with trypanothione reductase, a redox enzyme of Leishmania. Significant change in the morphology of the L. donovani promastigote by the compounds was observed. The Structure-activity relationship analysis suggest the pharmacophoric importance of alkylpolyamine and carboxamide motifs. In silico evaluation indicated that the investigated active molecules 9a and 9b possess important drug-likeness, physicochemical and pharmacokinetic-relevant properties.
Collapse
Affiliation(s)
- Archana P Shah
- National Institute of Pharmaceutical Education and Research, Department of Medicinal Chemistry, 160062, Mohali, INDIA
| | - Neha Hura
- National Institute of Pharmaceutical Education and Research, Department of Medicinal Chemistry, 160062, Mohali, INDIA
| | - Neerupudi Kishore Babu
- National Institute of Pharmaceutical Education and Research, Department of Biotechnology, 160062, Mohali, INDIA
| | - Nibedita Roy
- National Institute of Pharmaceutical Education and Research, Department of Medicinal Chemistry, 160062, Mohali, INDIA
| | - Vajja Krishna Rao
- National Institute of Pharmaceutical Education and Research, Department of Medicinal Chemistry, 160062, Mohali, INDIA
| | - Anindita Paul
- National Institute of Pharmaceutical Education and Research, Department of Biotechnology, 160062, Mohali, INDIA
| | - Pradyot Kumar Roy
- National Institute of Pharmaceutical Education and Research, Department of Biotechnology, 160062, Mohali, INDIA
| | - Sushma Singh
- National Institute of Pharmaceutical Education and Research, Department of Biotechnology, 160062, Mohali, INDIA
| | - Sankar Kumar Guchhait
- National Institute of Pharmaceutical Education and Research, Department of Medicinal Chemistry, Phase X, Sector 67, 160062, S. A. S. Nagar Mohali, INDIA
| |
Collapse
|
6
|
Febrifugine dihydrochloride as a new oral chemotherapeutic agent against visceral leishmaniasis infection. Exp Parasitol 2022; 236-237:108250. [DOI: 10.1016/j.exppara.2022.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
|
7
|
In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity. Processes (Basel) 2021. [DOI: 10.3390/pr9122221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present research aimed to synthesize ketoprofen prodrugs and to demonstrate their potentiality for oral treatment to treat chronic inflammation by reducing its hepatotoxicity and gastrointestinal irritation. Methyl 2-(3-benzoyl phenyl) propanoate, ethyl 2-(3-benzoyl phenyl) propanoate and propyl 2-(3-benzoyl phenyl) propanoate was synthesized by esterification and identified by nuclear magnetic resonance (1HNMR) and infrared (IR) spectrometric analysis. In silico SwissADME and ProTox-II analysis stated methyl derivative as ideal candidate for oral absorption, having a >30-fold LD50 value compared to ketoprofen with no hepatotoxicity. Moreover, in vivo hepatotoxicity study demonstrates that these ester prodrugs have significantly lower effects on liver toxicity compared to pure ketoprofen. Furthermore, ex vivo intestinal permeation enhancement ratio was statistically significant (* p < 0.05) compared to ketoprofen. Likewise, the prodrugs were found to exhibit not only remarkable in vitro anti-proteolytic and lysosomal membrane stabilization potentials, but also significant efficiency to alleviate pain induced by inflammation, as well as central and peripheral stimulus in mice model in vivo. These outcomes recommend that ketoprofen ester prodrugs, especially methyl derivative, can be a cost-effective candidate for prolonged treatment of chronic inflammatory diseases.
Collapse
|
8
|
The Potential use of a Curcumin-Piperine Combination as an Antimalarial Agent: A Systematic Review. J Trop Med 2021; 2021:9135617. [PMID: 34671402 PMCID: PMC8523290 DOI: 10.1155/2021/9135617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant global health problem, but the development of effective antimalarial drugs is challenging due to the parasite's complex life cycle and lack of knowledge about the critical specific stages. Medicinal plants have been investigated as adjuvant therapy for malaria, so this systematic review summarizes 46 primary articles published until December 2020 that discuss curcumin and piperine as antimalarial agents. The selected articles discussed their antioxidant, anti-inflammatory, and antiapoptosis properties, as well as their mechanism of action against Plasmodium species. Curcumin is a potent antioxidant, damages parasite DNA, and may promote an immune response against Plasmodium by increasing reactive oxygen species (ROS), while piperine is also a potent antioxidant that potentiates the effects of curcumin. Hence, combining these compounds is likely to have the same effect as chloroquine, that is, attenuate and restrict parasite development, thereby reducing parasitemia and increasing host survival. This systematic review presents new information regarding the development of a curcumin-piperine combination for future malaria therapy.
Collapse
|
9
|
Bankole VO, Osungunna MO, Souza CRF, Salvador SL, Oliveira WP. Spray-Dried Proliposomes: an Innovative Method for Encapsulation of Rosmarinus officinalis L. Polyphenols. AAPS PharmSciTech 2020; 21:143. [PMID: 32424702 PMCID: PMC7235052 DOI: 10.1208/s12249-020-01668-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
This work aims to improve the functionality of Rosmarinus officinalis L. (rosemary) polyphenols by encapsulation in an optimized proliposome formulation. A 23 Box-Wilson central composite design (CCD) was employed to determine lone and interaction effects of composition variables on moisture content (Xp); water activity (Aw); concentration and retention of rosemary polyphenols-rosmarinic acid (ROA), carnosol (CAR), and carnosic acid (CNA); and recovery of spray-dried proliposomes (SDP). Processing conditions which generate proliposomes with optimum physicochemical properties were determined by multi-response analysis (desirability approach). Antioxidant and antifungal activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) sequestering and minimum inhibitory concentration (MIC)/minimum fungicidal concentration (MFC) assays, respectively. SDP exhibited high polyphenol retention, ranging from 62.0 to 100.0% w/w, showing dependence on composition variables and polyphenol lipophilicity. SDP recovery ranged from 20.1 to 45.8%, with Xp and Aw of 1.7 ± 0.14-2.5 ± 0.23% w/w and 0.30 ± 0.004-0.47 ± 0.003, respectively, evidencing product with good chemical and microbiological stability. Optimum liposomal composition was determined, namely, lipid concentration (4.26% w/w), lyophilized extract (LE) concentration (4.48% w/w), and drying aid:(lipid+extract) ratio (7.55% w/w) on wet basis. Relative errors between experimental and predicted values for SDP properties showed concurrence for all responses except CAR retention, being 22% lower. SDP showed high antioxidant activity with IC50 of 9.2 ± 0.2 μg/mL, superior to results obtained for LE (10.8 μg/mL) and butylated hydroxytoluene (BHT), a synthetic antioxidant (12.5 μg/mL). MIC and MFC against Candida albicans (ATCC1023) were 312.5 μg/mL and 1250 μg/mL, respectively, a moderate antimicrobial activity for phytochemical-based products. SDP is shown as a veritable tool to encapsulate hydrophilic and lipophilic rosemary polyphenols generating a product with optimal physicochemical and biological properties.
Collapse
|
10
|
Isyaku Y, Uzairu A, Uba S. Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon 2020; 6:e03724. [PMID: 32322718 PMCID: PMC7160569 DOI: 10.1016/j.heliyon.2020.e03724] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
Botrytis Cinerea is a plant pathogen that affect a large number of plant species like tomatoes, Lettuce, Grapes, and Strawberries among others. Sulfonamides are widely used in pharmaceutical industries as anti-cancer, anti-inflammatory and anti-viral agents. To complement our previous QSAR study, a ligand-based design and ADME/T study were carried out on these sulfonamides compounds for their fungicidal activity toward “Botrytis Cinerea”. With the help of AutoDock Vina version 4.0 in Pyrex software, the docking analysis was performed after optimization of the compounds at DFT/B3LYP/6-31G∗ quantum mechanical method using Spartan 14 softwar. Using the model generated in the previous QSAR work, the descriptors of the chosen model were considered in modifying the most promising compound ‘9’ in which twelve (12) derivatives were designed and found to have better activity than the template (compound 9). With compound 9j having the highest activity that turns out to be about 14 and 15 times more potent than the commercial fungicides “procymidone and chlorothalonil”. Furthermore, ADME/T properties of the designed compounds were calculated using the SwissADME online tool in which all the compounds were found to have good pharmacokinetic profile. Moreover, a molecular docking study on selected compounds of the dataset (compound 8, 13, 14, 19, 20, 21, 22 and 29) revealed that compound ‘20’ turned out to have the highest docking score of -8.5 kJ/mol. This compound has a strong affinity with the macromolecular target point (PDB ID: 3wh1) producing H-bond and hydrophobic interaction at the target point of amino acid residue. The molecular docking analysis gave an insight on the structure-based design of the new compounds with better activity against B. cinerea.
Collapse
Affiliation(s)
- Yusuf Isyaku
- Department of Chemistry Ahmadu Bello University, P.M.B. 1044, Zaria, Nigeria
| | - Adamu Uzairu
- Department of Chemistry Ahmadu Bello University, P.M.B. 1044, Zaria, Nigeria
| | - Sani Uba
- Department of Chemistry Ahmadu Bello University, P.M.B. 1044, Zaria, Nigeria
| |
Collapse
|
11
|
Vibala B, Praseetha P, Vijayakumar S. Evaluating new strategies for anticancer molecules from ethnic medicinal plants through in silico and biological approach - A review. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Jha A, Vimal A, Bakht A, Kumar A. Inhibitors of CPH1-MAP Kinase Pathway: Ascertaining Potential Ligands as Multi-Target Drug Candidate in Candida albicans. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9747-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Deciphering the role of Sodium Lignosulfonate against Candida spp. as persuasive anticandidal agent. Int J Biol Macromol 2018; 107:1212-1219. [DOI: 10.1016/j.ijbiomac.2017.09.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023]
|
14
|
Silva LS, Prado GC, Quintana PG, Heise N, Miranda KR, Torres EJL, Persechini PM, de Sá Pinheiro AA, Schachter J. Plasmodium falciparum invasion and intraerythrocytic development are impaired by 2', 3'-dialdehyde adenosine. Microbes Infect 2017; 20:205-211. [PMID: 29253662 DOI: 10.1016/j.micinf.2017.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022]
Abstract
Purine nucleotide synthesis in protozoa takes place exclusively via the purine salvage pathway and S-adenosyl-l-homocysteine hydrolase (SAHH) is an important enzyme in the Plasmodium salvage pathway which is not present in erythrocytes. Here, we describe the antimalarial effect of 2'3'-dialdehyde adenosine or oxidized adenosine (oADO), inhibitor of SAHH, on in vitro infection of human erythrocytes by P. falciparum. Treatment of infected erythrocytes with oADO inhibits parasite development and reinvasion of new cells. Erythrocytes pre-treated with oADO have a reduced susceptibility to invasion. Our results suggest that oADO interferes with one or more parasitic enzymes of the purine salvage pathway.
Collapse
Affiliation(s)
- Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo C Prado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paula G Quintana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Kildare R Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo J L Torres
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro M Persechini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia de Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julieta Schachter
- Polo Xerém, Duque de Caxias, Universidade Federal Do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Singh DB, Dwivedi S. Structural insight into binding mode of inhibitor with SAHH of Plasmodium and human: interaction of curcumin with anti-malarial drug targets. J Chem Biol 2016; 9:107-120. [PMID: 27698948 DOI: 10.1007/s12154-016-0155-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022] Open
Abstract
S-adenosyl-L-homocysteine hydrolase of Plasmodium falciparum (PfSAHH) is a potential drug target against malaria, and selective inhibition of PfSAHH is the excellent strategy to prevent the growth of parasite inside the host. Therefore, a comparative analysis of human S-adenosyl-L-homocysteine hydrolase (HsSAHH) and PfSAHH has been performed to explore the structural differences. Structural superimposition of PfSAHH and HsSAHH has generated the RMSD of 0.749 Å over 394 alpha carbon pairs. Residues of PfSAHH from position Tyr152 to Lys193 aligned with insertion/deletion region in HsSAHH, and these extra residues results in an extent of variation in cavity region of PfSAHH. Nicotinamide adenine dinucleotide (NAD) was observed to form hydrogen bonding with Thr201, Thr202, Thr203, Asn235, Val268, Glu287, Asn322, Ile343, Asn391, Lys473, and Tyr477 and also forms hydrophobic interactions with Val268, Ile288, and Thr320 of PfSAHH. In comparison to HsSAHH, Asn322, Lys473, and Tyr477 residues of PfSAHH are unique in interaction with NAD. 2-Fluoroaristeromycin and other analogues of aristeromycin have shown the good binding affinity for both enzymes. Structural differences between PfSAHH and HsSAHH might be employed to design the potential inhibitor of PfSAHH. To find the target enzyme responsible for an anti-malarial effect, molecular docking and interaction analysis of curcumin were performed with 34 drug targets of P. falciparum. Curcumin shows high affinity for binding with HGPRT of PfHGPRT, and an anti-malarial effect of curcumin might be due to binding with PfHGPRT.
Collapse
Affiliation(s)
- Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024 India ; School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, 201308 India
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, 201308 India
| |
Collapse
|
16
|
Pandey RK, Kumbhar BV, Sundar S, Kunwar A, Prajapati VK. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. J Recept Signal Transduct Res 2016; 37:60-70. [DOI: 10.3109/10799893.2016.1171344] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, India
| |
Collapse
|
17
|
Pandey RK, Kumbhar BV, Srivastava S, Malik R, Sundar S, Kunwar A, Prajapati VK. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. J Biomol Struct Dyn 2016; 35:141-158. [DOI: 10.1080/07391102.2015.1135298] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India
| |
Collapse
|
18
|
Singh S, Singh DB, Singh A, Gautam B, Ram G, Dwivedi S, Ramteke PW. An Approach for Identification of Novel Drug Targets in Streptococcus pyogenes SF370 Through Pathway Analysis. Interdiscip Sci 2016; 8:388-394. [PMID: 26750924 DOI: 10.1007/s12539-015-0139-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 06/29/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022]
Abstract
Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.
Collapse
Affiliation(s)
- Satendra Singh
- Department of Computational Biology and Bioinformatics, SHIATS, Allahabad, 211007, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India.
| | | | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, SHIATS, Allahabad, 211007, India
| | - Gurudayal Ram
- Department of Molecular and Cellular Engineering, SHIATS, Allahabad, 211007, India
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India
| | - Pramod W Ramteke
- Department of Biological Sciences, SHIATS, Allahabad, 211007, India
| |
Collapse
|
19
|
Pandey RK, Sharma D, Bhatt TK, Sundar S, Prajapati VK. Developing imidazole analogues as potential inhibitor forLeishmania donovanitrypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach. J Biomol Struct Dyn 2015; 33:2541-53. [DOI: 10.1080/07391102.2015.1085904] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Singh S, Singh AK, Wadhwa G, Singh DB, Dwivedi S, Gautam B, Ramteke PW. A Quantitative Measure of Conformational Changes in Apo, Holo and Ligand-Bound Forms of Enzymes. Interdiscip Sci 2015; 8:192-201. [PMID: 26260067 DOI: 10.1007/s12539-015-0284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/10/2014] [Accepted: 11/26/2014] [Indexed: 10/23/2022]
Abstract
Determination of the native geometry of the enzymes and ligand complexes is a key step in the process of structure-based drug designing. Enzymes and ligands show flexibility in structural behavior as they come in contact with each other. When ligand binds with active site of the enzyme, in the presence of cofactor some structural changes are expected to occur in the active site. Motivation behind this study is to determine the nature of conformational changes as well as regions where such changes are more pronounced. To measure the structural changes due to cofactor and ligand complex, enzyme in apo, holo and ligand-bound forms is selected. Enzyme data set was retrieved from protein data bank. Fifteen triplet groups were selected for the analysis of structural changes based on selection criteria. Structural features for selected enzymes were compared at the global as well as local region. Accessible surface area for the enzymes in entire triplet set was calculated, which describes the change in accessible surface area upon binding of cofactor and ligand with the enzyme. It was observed that some structural changes take place during binding of ligand in the presence of cofactor. This study will helps in understanding the level of flexibility in protein-ligand interaction for computer-aided drug designing.
Collapse
Affiliation(s)
- Satendra Singh
- Department of Computational Biology and Bioinformatics, JSBB, SHIATS, Allahabad, 211007, India
| | - Atul Kumar Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology, Mumbai, 400076, India
| | - Gulshan Wadhwa
- Apex Bioinformatics Centre, Department of Biotechnology, Ministry of Science and Technology, CGO Complex, Lodhi Road, New Delhi, 110003, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India.
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201308, India
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, JSBB, SHIATS, Allahabad, 211007, India
| | - Pramod W Ramteke
- Department of Biological Sciences, SHIATS, Allahabad, 211007, India
| |
Collapse
|
21
|
Singh S, Singh AK, Wadhwa G, Singh DB, Dwivedi S, Gautam B, Ramteke PW. A quantitative measure of conformational changes in Apo, holo and ligand bound form of enzymes. Interdiscip Sci 2015. [PMID: 25863964 DOI: 10.1007/s12539-014-0251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/10/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Determination of the native geometry of the enzymes and ligand complexe is a key step in the process of structure based drug designing. Enzymes and ligands show flexibility in structural behavior as they come in contact with each other. When ligand binds with active site of the enzyme, in presence of cofactor some structural changes are expected to occur in the active site. Motivation behind this study is to determine the nature of conformational changes as well as regions where such changes are more pronounced. To measure the structural changes due to cofactor and ligand complex, enzyme in Apo, holo and ligand bound form is selected. Enzyme data set was retrieved from protein data bank (PDB). 15 triplet groups were selected for the analysis of structural changes based on selection criteria. Structural features for selected enzymes were compared at the global as well as local region. Accessible surface area for the enzymes in entire triplet set was calculated, which describes the change in accessible surface area upon binding of cofactor and ligand with the enzyme. It was observed that some structural changes take place during binding of ligand in presence of cofactor. This study will helps in understanding the level of flexibility in protein-ligand interaction for computer aided drug designing.
Collapse
Affiliation(s)
- Satendra Singh
- Department of Computational Biology & Bioinformatics, JSBB, SHIATS, Allahabad, 211007, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Sampaio LDFS, Mesquita FP, de Sousa PRM, Silva JL, Alves CN. The melatonin analog 5-MCA-NAT increases endogenous dopamine levels by binding NRH:quinone reductase enzyme in the developing chick retina. Int J Dev Neurosci 2014; 38:119-26. [PMID: 25218627 DOI: 10.1016/j.ijdevneu.2014.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022] Open
Abstract
NRH:quinone reductase (QR2) is present in the retinas of embryonic and post-hatched (PH) chicks. 5-Methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT) is a QR2 ligand that increases cAMP levels in developing retinas, but it does not affect cAMP levels in CHO-QR2 cells. The dopamine quinone reductase activity of QR2 retrieves dopamine, which increases cAMP levels in developing retinas. The objective of the present study was to investigate whether 5-MCA-NAT increases endogenous dopamine levels in retinas from chick embryos and post-hatched chicks. Endogenous dopamine was measured by enzyme-linked immunosorbent assay (ELISA). 5-MCA-NAT increased retinal endogenous dopamine levels at all developmental stages studied and in PH chicks (-logEC50=11.62±0.34 M). This effect was inhibited by non-selective antagonists of receptors and melatonin binding sites N-acetyl-2-benzyltryptamine (luzindole, 5 μM), but it was not inhibited by the Mel1b melatonin receptor antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT, 10 nM). The QR2 cosubstrate, N-methyl-dihydronicotinamide (NMH) (-logEC50=6.74±0.26 M), increased endogenous dopamine levels in controls and in retinas stimulated with 5-MCA-NAT (3 nM). The QR2 inhibitor benzo[e]pyrene inhibited endogenous dopamine levels in both control (-logIC50=7.4±0.28 M) and NMH-stimulated (at 100 nM and 1 μM benzo[e]pyrene concentrations) retinas. Theoretical studies using Molegro Virtual Docking software corroborated these experimental results. We conclude that 5-MCA-NAT increases the level of endogenous dopamine via QR2. We suggest that this enzyme triggers double reduction of the dopamine quinone, recovering dopamine in retinal development.
Collapse
Affiliation(s)
- Lucia de Fatima Sobral Sampaio
- Lab. de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil.
| | - Felipe Pantoja Mesquita
- Lab. de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Paulo Robson Monteiro de Sousa
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Jerônimo Lameira Silva
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Claudio Nahum Alves
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| |
Collapse
|
23
|
Munigunti R, Gathiaka S, Acevedo O, Sahu R, Tekwani B, Calderón AI. Determination of antiplasmodial activity and binding affinity of curcumin and demethoxycurcumin towardsPfTrxR. Nat Prod Res 2014; 28:359-64. [DOI: 10.1080/14786419.2013.866112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Abstract
AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by normal memory loss and cognitive impairment in humans. Many drug targets and disease-modulating therapies are available for treatment of AD, but none of these are effective enough in reducing problems associated with recognition and memory. Potential drug targets so far reported for AD are β-secretase, Γ-secretase, amyloid beta (Aβ) and Aβ fibrils, glycogen synthase kinase-3 (GSK-3), acyl-coenzyme A: cholesterol acyl-transferase (ACAT) and acetylcholinesterase (AChE). Herbal remedies (antioxidants) and natural metal-chelators have shown a very significant role in reducing the risk of AD, as well as lowering the effect of Aβ in AD patients. Researchers are working in the direction of antisense and stem cell-based therapies for a cure for AD, which mainly depends on the clearance of misfolded protein deposits — including Aβ, tau, and alpha-synuclein. Computational approaches for inhibitor designing, interaction analysis, principal descriptors and an absorption, distribution, metabolism, excretion and toxicity (ADMET) study could speed up the process of drug development with higher efficacy and less chance of failure. This paper reviews the known drugs, drug targets, and existing and future therapies for the treatment of AD.
Collapse
|
25
|
Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS, Poroikov VV. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 2014; 31:1585-611. [DOI: 10.1039/c4np00068d] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An overview of databases andin silicotools for discovery of the hidden therapeutic potential of medicinal plants.
Collapse
Affiliation(s)
- Alexey A. Lagunin
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| | - Rajesh K. Goel
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | - Dinesh Y. Gawande
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | - Priynka Pahwa
- Department of Pharmaceutical Sciences and Drug Research
- Punjabi University
- Patiala-147002, India
| | | | | | - Sergey M. Ivanov
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Anastassia V. Rudik
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Varvara I. Konova
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
| | - Pavel V. Pogodin
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| | | | - Vladimir V. Poroikov
- Orekhovich Institute of Biomedical Chemistry of Rus. Acad. Med. Sci
- Moscow, Russia
- Russian National Research Medical University
- Medico-Biologic Faculty
- Moscow, Russia
| |
Collapse
|
26
|
Palanisamy B, Ekambaram R, Heese K. Thymine distribution in genes provides novel insight into the functional significance of the proteome of the malaria parasite Plasmodium falciparum 3D7. Bioinformatics 2013; 30:597-600. [DOI: 10.1093/bioinformatics/btt587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|