1
|
Bregado JL, Secchi AR, Tavares FW. A density functional theory study on interactions in water-bridged dimeric complexes of lignin. Phys Chem Chem Phys 2024; 26:9234-9252. [PMID: 38444363 DOI: 10.1039/d4cp00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignin is the main plant cell wall component responsible for recalcitrance in the process of lignocellulosic biomass conversion into biofuels. The recalcitrance and insolubility of lignin in different reaction media are due in part to the hydrogen bonds and π interactions that hold syringyl (S) and guaiacyl (G) units together and promote the formation of stable water-bridged dimeric complexes (WBDCs): S⋯G and S⋯S, in native lignin. The current understanding of how each type of interaction influences the stability of these complexes within lignin native cell walls is still limited. Here, we found by DFT calculations that hydrogen bonding is more dominant than π-stacking interaction between aromatic rings of WBDCs. Although there is a stronger interaction of hydrogen bonds between subunits and water and higher π-stacking interaction in the S⋯S complex compared to the S⋯G complex, the former complex is less thermodynamically stable than the latter due to the entropic contribution coming from the methoxy substituents in the S-unit. Our results demonstrate that the methoxylation degree of lignin units does not significantly influence the structural geometries of WBDCs; if anything, an enhanced dispersion interaction between ring aromatics results in quasi-sandwich geometries as found in "coiled" lignin structures in the xylem tissue of wood. In the same way as that with ionic liquids, polar solvents can dissolve S-lignin by favorable interactions with the aliphatic hydroxyl group in the α-position as the key site or the aromatic hydroxyl group as the secondary site.
Collapse
Affiliation(s)
- Jurgen Lange Bregado
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
| | - Argimiro R Secchi
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| | - Frederico W Tavares
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| |
Collapse
|
2
|
Zhao W, Deligey F, Chandra Shekar S, Mentink-Vigier F, Wang T. Current limitations of solid-state NMR in carbohydrate and cell wall research. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107263. [PMID: 35809516 DOI: 10.1016/j.jmr.2022.107263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
High-resolution investigation of cell wall materials has emerged as an important application of biomolecular solid-state NMR (ssNMR). Multidimensional correlation experiments have become a standard method for obtaining sufficient spectral resolution to determine the polymorphic structure of carbohydrates and address biochemical questions regarding the supramolecular organization of cell walls. Using plant cellulose and matrix polysaccharides as examples, we will review how the multifaceted complexity of polysaccharide structure is impeding the resonance assignment process and assess the available biochemical and spectroscopic approaches that could circumvent this barrier. We will emphasize the ineffectiveness of the current methods in reconciling the ever-growing dataset and deriving structural information. We will evaluate the protocols for achieving efficient and homogeneous hyperpolarization across the cell wall material using magic-angle spinning dynamic nuclear polarization (MAS-DNP). Critical questions regarding the line-broadening effects of cell wall molecules at cryogenic temperature and by paramagnetic biradicals will be considered. Finally, the MAS-DNP method will be placed into a broader context with other structural characterization techniques, such as cryo-electron microscopy, to advance ssNMR research in carbohydrate and cell wall biomaterials.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - S Chandra Shekar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
3
|
Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat Commun 2022; 13:538. [PMID: 35087039 PMCID: PMC8795156 DOI: 10.1038/s41467-022-28165-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches. We show that the extent of glycan-aromatic association increases sequentially across grasses, hardwoods, and softwoods. Lignin principally packs with the xylan in a non-flat conformation via non-covalent interactions and partially binds the junction of flat-ribbon xylan and cellulose surface as a secondary site. All molecules are homogeneously mixed in softwoods; this unique feature enables water retention even around the hydrophobic aromatics. These findings unveil the principles of polymer interactions underlying the heterogeneous architecture of lignocellulose, which may guide the rational design of more digestible plants and more efficient biomass-conversion pathways. The plant biomass is a composite formed by a variety of polysaccharides and an aromatic polymer named lignin. Here, the authors use solid-state NMR spectroscopy to unveil the carbohydrate-aromatic interface that leads to the variable architecture of lignocellulose biomaterials.
Collapse
|
4
|
Zhang Y, Yu J, Wang X, Durachko DM, Zhang S, Cosgrove DJ. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 2021; 372:706-711. [PMID: 33986175 DOI: 10.1126/science.abf2824] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Plants have evolved complex nanofibril-based cell walls to meet diverse biological and physical constraints. How strength and extensibility emerge from the nanoscale-to-mesoscale organization of growing cell walls has long been unresolved. We sought to clarify the mechanical roles of cellulose and matrix polysaccharides by developing a coarse-grained model based on polymer physics that recapitulates aspects of assembly and tensile mechanics of epidermal cell walls. Simple noncovalent binding interactions in the model generate bundled cellulose networks resembling that of primary cell walls and possessing stress-dependent elasticity, stiffening, and plasticity beyond a yield threshold. Plasticity originates from fibril-fibril sliding in aligned cellulose networks. This physical model provides quantitative insight into fundamental questions of plant mechanobiology and reveals design principles of biomaterials that combine stiffness with yielding and extensibility.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jingyi Yu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Xuan Wang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel M Durachko
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Aguilera-Segura SM, Di Renzo F, Mineva T. Molecular Insight into the Cosolvent Effect on Lignin-Cellulose Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14403-14416. [PMID: 33202139 DOI: 10.1021/acs.langmuir.0c02794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding and controlling the physical adsorption of lignin compounds on cellulose pulp are key parameters in the successful optimization of organosolv processes. The effect of binary organic-aqueous solvents on the coordination of lignin to cellulose was studied with molecular dynamics simulations, considering ethanol and acetonitrile to be organic cosolvents in aqueous solutions in comparison to their monocomponent counterparts. The structures of the solvation shells around cellulose and lignin and the energetics of lignin-cellulose adhesion indicate a more effective disruption of lignin-cellulose binding by binary solvents. The synergic effect between solvent components is explained by their preferential interactions with lignin-cellulose complexes. In the presence of pure water, long-lasting H-bonds in the lignin-cellulose complex are observed, promoted by the nonfavorable interactions of lignin with water. Ethanol and acetonitrile compete with water and lignin for cellulose oxygen binding sites, causing a nonlinear decrease in the lignin-cellulose interactions with the amount of the organic component. This effect is modulated by the water exclusion from the cellulose solvation shell by the organic solvent component. The amount and rate of water exclusion depend on the type of organic cosolvent and its concentration.
Collapse
Affiliation(s)
| | | | - Tzonka Mineva
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
6
|
Theoretical Research on Excited States: Ultraviolet and Fluorescence Spectra of Aromatic Amino Acids. Interdiscip Sci 2020; 12:530-536. [PMID: 32979147 DOI: 10.1007/s12539-020-00395-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Using Gaussian and Orca, UV and fluorescence spectra of three amino acids (Tyr: Tyrosine, Trp: Tryptophan, Phe: Phenylalanine) were calculated by different functionals (B3LYP, BP86, wB97X). The spectra calculated by BP86 are consistent with the experiments. UV spectra peak of Tyr is 255 nm (Exp. 275 nm, Δλ = 20 nm), Trp is 279 nm (Exp. 277 nm, Δλ = 2 nm), and Phe is 275 nm (Exp. 257 nm, Δλ = 18 nm). Fluorescence spectra peak of Trp is 341 nm (Exp. 350 nm, Δλ = 9 nm), Tyr is 295 nm (Exp. 306 nm, Δλ = 11 nm), and Phe is 285 nm (Exp. 302 nm, Δλ = 17 nm). Moreover, a theoretical model for calculating the excited states of biomolecules is established. Compared with Gaussian's results, Orca is more quickly and effectively for calculating excited state spectra with the same accuracy.
Collapse
|
7
|
Zhai C, Li T, Shi H, Yeo J. Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence. J Mater Chem B 2020; 8:6562-6587. [DOI: 10.1039/d0tb00896f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Establishing the “Materials 4.0” paradigm requires intimate knowledge of the virtual space in materials design.
Collapse
Affiliation(s)
- Chenxi Zhai
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Tianjiao Li
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| |
Collapse
|