1
|
Zhao L, Li L, Liu Z, Wang X, Yang R, Luo Z, Fang X, Luan Y. Aptamer functionalized magnetic hydrophobic polymer with synergetic effect for enhanced adsorption of alternariol from wheat. Food Chem 2024; 435:137556. [PMID: 37774612 DOI: 10.1016/j.foodchem.2023.137556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
A new adsorbent based on aptamer functionalized magnetic hydrophobic polymer (MHbPA) was developed for specific and efficient adsorption of alternariol (AOH). Through the synergistic effect of aptamer-AOH affinity and hydrophobic interaction of polymer, enhanced adsorption properties had been realized, in which AOH aptamer was the first selected through capture-SELEX with good specificity and affinity, and the targeting polymer was designed based on the hydrophobicity of AOH to increase the interaction. The proposed MHbPA demonstrated a high adsorption capacity of 187.6 ng/mg for AOH. The adsorption behavior was considered as Langmuir adsorption model and pseudo-secondary kinetic adsorption model. Notably, the adsorption of AOH in wheat powder samples could be accomplished within 10 mins with acceptable recoveries. The as designed adsorbent with synergistic effect provides new insights into the development of enhanced pretreatment materials for mycotoxin monitoring in complex food matrices with specific aptamer and targeting polymer.
Collapse
Affiliation(s)
- Liping Zhao
- Institute of Quality Standard and Testing Technology of BAAFS, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing 100097, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, China
| | - Zheng Liu
- Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing 100085, China
| | - Xinjie Wang
- Institute of Quality Standard and Testing Technology of BAAFS, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing 100097, China
| | - Ruiqi Yang
- Institute of Quality Standard and Testing Technology of BAAFS, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing 100097, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostic;Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostic;Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology of BAAFS, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing 100097, China.
| |
Collapse
|
2
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
3
|
Scheibenzuber S, Dick F, Asam S, Rychlik M. Analysis of 13 Alternaria mycotoxins including modified forms in beer. Mycotoxin Res 2021; 37:149-159. [PMID: 33666860 PMCID: PMC8163686 DOI: 10.1007/s12550-021-00424-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/13/2023]
Abstract
A multi-mycotoxin LC-MS/MS method was developed to quantify 13 free and modified Alternaria toxins in different beer types by applying a combination of stable-isotope dilution assays (SIDAs) and matrix-matched calibration. With limits of detection (LODs) between 0.03 µg/L (alternariol monomethyl ether, AME) and 5.48 µg/L (altenuene, ALT), limits of quantitation (LOQs) between 0.09 µg/L (AME) and 16.24 µg/L (ALT), and recoveries between 72 and 113%, we obtained a sensitive and reliable method, which also covers the emerging toxins alternariol-3-glucoside (AOH-3-G), alternariol-9-glucoside (AOH-9-G), alternariol monomethyl ether-3-glucoside (AME-3-G) and alternariol-3-sulfate (AOH-3-S) and alternariol monomethylether-3-sulfate (AME-3-S). Furthermore, 50 different beer samples were analyzed, showing no contamination with Alternaria toxins apart from tenuazonic acid (TeA) in concentrations between 0.69 µg/L and 16.5 µg/L. According to this study, the exposure towards TeA through beer consumption can be considered as relatively low, as the threshold of toxicological concern (TTC) value of 1500 ng/kg body weight per day might not be reached when consuming reasonable amounts of beer.
Collapse
Affiliation(s)
- Sophie Scheibenzuber
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Fabian Dick
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Prendes LP, Merín MG, Zachetti VGL, Pereyra A, Ramirez ML, Morata de Ambrosini VI. Impact of antagonistic yeasts from wine grapes on growth and mycotoxin production by Alternaria alternata. J Appl Microbiol 2021; 131:833-843. [PMID: 33420735 DOI: 10.1111/jam.14996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/28/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022]
Abstract
AIMS Alternaria alternata is a major contaminant of wine grapes, meaning a health risk for wine consumers due to the accumulation of toxic metabolites. To develop a successful biofungicide, the effectiveness of epiphytic wine grape yeasts against A. alternata growth and toxin production was assessed in vitro under temperature and aW conditions that simulate those present in the field. METHODS AND RESULTS The effect of 14 antagonistic yeasts was evaluated on growth and alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) production by three A. alternata strains in a synthetic medium with composition similar to grape (SN) at three temperatures (15, 25 and 30°C). All Metschnikowia sp. yeast strains evaluated completely prevented A. alternata growth and mycotoxin production at all temperatures in SN medium. Meanwhile, the growth inhibition exerted by Starmerella bacillaris yeast strains was higher at 30°C, followed by 25 and 15°C, being able to show a stimulating or inhibiting effect. Hanseniaspora uvarum yeast strains showed a growth promoting activity higher at 15°C, followed by 25 and 30°C. Even at conditions where A. alternata growth was stimulated by the S. bacillaris and H. uvarum yeasts, high inhibitions of mycotoxin production (AOH, AME and TA) were observed, indicating a complex interaction between growth and mycotoxin production. CONCLUSION There is a significant influence of temperature on the effectiveness of biocontrol against A. alternata growth and mycotoxin production. Metschnikowia sp. strains are good candidates to compose a biofungicide against A. alternata. SIGNIFICANCE AND IMPACT OF THE STUDY Among the different antagonistic yeasts evaluated, only Metschnikowia sp. strains were equally effective reducing A. alternata growth and mycotoxin at different temperatures underlining the importance of considering environmental factors in the selection of the antagonists.
Collapse
Affiliation(s)
- L P Prendes
- Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, San Rafael, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M G Merín
- Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, San Rafael, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - V G L Zachetti
- Instituto de Investigacion en Micología y Micotoxicología CONICET-Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - A Pereyra
- Instituto de Investigacion en Micología y Micotoxicología CONICET-Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - M L Ramirez
- Instituto de Investigacion en Micología y Micotoxicología CONICET-Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - V I Morata de Ambrosini
- Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, San Rafael, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Fliszár-Nyúl E, Szabó Á, Szente L, Poór M. Extraction of mycotoxin alternariol from red wine and from tomato juice with beta-cyclodextrin bead polymer. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Appel (Kohn) BN, Gottmann J, Schäfer J, Bunzel M. Absorption and metabolism of modified mycotoxins of alternariol, alternariol monomethyl ether, and zearalenone in Caco‐2 cells. Cereal Chem 2020. [DOI: 10.1002/cche.10360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beate Nadine Appel (Kohn)
- Department of Food Chemistry and Phytochemistry Institute of Applied Biosciences Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jörg Gottmann
- Department of Food Chemistry and Phytochemistry Institute of Applied Biosciences Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Judith Schäfer
- Department of Food Chemistry and Phytochemistry Institute of Applied Biosciences Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry Institute of Applied Biosciences Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
7
|
Chiotta ML, Fumero MV, Cendoya E, Palazzini JM, Alaniz-Zanon MS, Ramirez ML, Chulze SN. Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Rev Argent Microbiol 2020; 52:339-347. [PMID: 32718824 DOI: 10.1016/j.ram.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that mainly belong to Aspergillus, Fusarium, Penicillium and Alternaria, which can grow in a variety of crops including cereals, oilseeds and fruits. Consequently, their prevalence in foods and by-products not only affects human and animal health but also causes important losses in both domestic and international markets. This review provides data about toxigenic fungal species and mycotoxin occurrence in different crops commonly grown in Argentina. This information will be relevant to establish adequate management strategies to reduce the impact of mycotoxins on human food and animal feed chains and to implement future legislation on the maximum permitted levels of these fungal metabolites.
Collapse
Affiliation(s)
- María Laura Chiotta
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET.
| | - María Verónica Fumero
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Fellow from CONICET
| | - Eugenia Cendoya
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Fellow from CONICET
| | - Juan Manuel Palazzini
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - María Silvina Alaniz-Zanon
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - María Laura Ramirez
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| | - Sofía Noemí Chulze
- Research Institute on Mycology and Micotoxicology (IMICO) - National Scientific and Technical Research Council - Argentina (CONICET) - National University of Río Cuarto (UNRC). Road 36 Km 601 (5800), Río Cuarto - Córdoba, Argentina; Members of the Research Career of CONICET
| |
Collapse
|
8
|
Hahm E, Kim YH, Pham XH, Jun BH. Highly Reproducible Surface-Enhanced Raman Scattering Detection of Alternariol Using Silver-Embedded Silica Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3523. [PMID: 32580325 PMCID: PMC7349361 DOI: 10.3390/s20123523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Alternariol (AOH) is a mycotoxin from fungi that has been found in processed foods due to its high thermal stability. To address the complexity and costs of conventional AOH detection methods, we propose an alternative based on surface-enhanced Raman scattering (SERS) and specially designed nanoparticle substrate. Herein, silver-embedded silica (SiO2@Ag) nanoparticles with a highly reproducible SERS signal were successfully developed for detecting AOH. Silica nanoparticles (~145 nm) were used as a template to deposit silver nanoparticles (~17 nm), thereby generating SiO2@Ag. The SiO2@Ag nanoparticles showed a good linearity between SERS signal intensity and AOH concentrations from 16 to 1000 nM with a limit of detection of 4.83 nM. Additionally, the SERS signal of the SiO2@Ag nanoparticles was highly reproducible, with relative standard deviations of 2.33-5.95% in the AOH concentration range from 10 to 10,000 nM, demonstrating the reliability of the proposed SERS method.
Collapse
Affiliation(s)
| | | | | | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (E.H.); (Y.-H.K.); (X.-H.P.)
| |
Collapse
|
9
|
Ayeni KI, Sulyok M, Krska R, Ezekiel CN. Fungal and plant metabolites in industrially-processed fruit juices in Nigeria. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:155-161. [PMID: 32207373 DOI: 10.1080/19393210.2020.1741691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is scarce data on the mycotoxin profile in retailed fruit juices in Nigeria. Thirty-five industrially-processed fruit juice samples randomly purchased from retailers in Ogun state, Nigeria, were analysed for the presence of > 650 toxic fungal and plant metabolites using a liquid chromatography tandem mass spectrometric method. Only 18 metabolites, including 3-nitropropionic acid, alternariol methylether and emodin, but excluding citrinin, fumonisin B2, ochratoxin A and patulin, were detected in trace levels in at least one juice sample. Amygdalin, a plant cyanogen, was quantified (2.05-359 µg/L) in 40% of the samples. Although the levels of mycotoxins and toxic plant metabolites found in the juice may be relatively low, daily consumption of juices containing such low levels may contribute to dietary exposures to these natural chemical contaminants in consumers. Fruit juice processors should be encouraged to adhere strictly to good manufacturing practices in order to keep mycotoxins away from the final products.
Collapse
Affiliation(s)
- Kolawole I Ayeni
- Department of Microbiology, Babcock University , Ilishan Remo, Nigeria
| | - Michael Sulyok
- Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU) , Tulln, Austria
| | - Rudolf Krska
- Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU) , Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast , Belfast, Northern Ireland
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University , Ilishan Remo, Nigeria.,Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU) , Tulln, Austria
| |
Collapse
|
10
|
Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem 2020; 314:126222. [PMID: 31981884 DOI: 10.1016/j.foodchem.2020.126222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Climate change has an impact on the chemical risks associated to wine consumption related with grape development and microbial contamination. We can classify chemical hazards in wine into two groups: those present in grapes due to agricultural practices, environmental contamination or fungal growth and those coming from fermentation and the winemaking process. The first group includes mycotoxins, whilst the second encompasses ethyl carbamate, biogenic amines, sulfur dioxide and proteins used as technological ingredients such as fining material. Usually the effective control of chemical hazards is achieved by assuring that they either are minimized or absent in the final product since their removal is somewhat difficult and sometimes it may affect sensory properties, which is a major issue in wine. Interestingly, it is possible to give recommendations to avoid excess of these compounds, but more research is needed to face future challenges related to climate change and consumer demands.
Collapse
Affiliation(s)
- Cristina Ubeda
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Villenave d Onron, France
| | - Ana B Cerezo
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain.
| |
Collapse
|
11
|
Yao CY, Xu ZL, Wang H, Zhu F, Luo L, Yang JY, Sun YM, Lei HT, Tian YX, Shen YD. High affinity antibody based on a rationally designed hapten and development of a chemiluminescence enzyme immunoassay for quantification of Alternariol in fruit Juice, maize and flour. Food Chem 2019; 283:359-366. [DOI: 10.1016/j.foodchem.2018.12.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022]
|
12
|
Fliszár-Nyúl E, Lemli B, Kunsági-Máté S, Dellafiora L, Dall'Asta C, Cruciani G, Pethő G, Poór M. Interaction of Mycotoxin Alternariol with Serum Albumin. Int J Mol Sci 2019; 20:ijms20092352. [PMID: 31083629 PMCID: PMC6539399 DOI: 10.3390/ijms20092352] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 01/29/2023] Open
Abstract
Alternariol (AOH) is a mycotoxin produced by Alternaria species. In vitro studies suggest the genotoxic, mutagenic, and endocrine disruptor effects of AOH, and an increased incidence of esophageal cancer has been reported related to higher AOH exposure. Human serum albumin (HSA) is the most abundant plasma protein in the circulation, it is able to affect toxicokinetic properties of numerous xenobiotics. HSA forms stable complexes with several mycotoxins, however, the interaction of AOH with albumin has not been examined. In this study, the complex formation of AOH with HSA was tested, employing fluorescence spectroscopy, ultrafiltration, and molecular modeling. Each spectroscopic measurement shows the formation of stable AOH-HSA complexes (K = 4 × 105 L/mol). Investigations with site markers (in spectroscopic and ultrafiltration models) as well as modeling studies suggest that AOH occupies Sudlow’s site I as a high-affinity binding site in HSA. The binding affinity of AOH towards bovine, porcine, and rat albumins was also tested, suggesting that AOH binds to rat albumin with considerably higher affinity than other albumins tested. Our results demonstrate the strong interaction of AOH with serum albumins, suggesting the potential in vivo importance of these interactions.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7642 Pécs; Hungary.
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7642 Pécs; Hungary.
| | - Beáta Lemli
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7642 Pécs; Hungary.
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Sándor Kunsági-Máté
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7642 Pécs; Hungary.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Rókus utca 2, H-7642 Pécs, Hungary.
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Via G.P. 7 Usberti 17/A, 43124 Parma, Italy.
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Via G.P. 7 Usberti 17/A, 43124 Parma, Italy.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Gábor Pethő
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7642 Pécs; Hungary.
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7642 Pécs; Hungary.
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7642 Pécs; Hungary.
| |
Collapse
|
13
|
Patriarca A, da Cruz Cabral L, Pavicich MA, Nielsen KF, Andersen B. Secondary metabolite profiles of small-spored Alternaria support the new phylogenetic organization of the genus. Int J Food Microbiol 2019; 291:135-143. [DOI: 10.1016/j.ijfoodmicro.2018.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/28/2018] [Accepted: 11/18/2018] [Indexed: 01/25/2023]
|
14
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
15
|
Prendes LP, Fontana AR, Merín MG, D´ Amario Fernández A, Bottini R, Ramirez ML, Morata de Ambrosini VI. Natural occurrence and production of tenuazonic acid in wine grapes in Argentina. Food Sci Nutr 2018; 6:523-531. [PMID: 29876102 PMCID: PMC5980183 DOI: 10.1002/fsn3.577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/16/2023] Open
Abstract
A survey was carried out to determine natural occurrence of tenuazonic acid (TA) in healthy and rotten wine grapes samples from different varieties (n = 37) collected during 2016 vintage in the region of DOC San Rafael (Argentina). In addition, inoculation experiments with three Alternaria alternata strains in wine grapes were done to elucidate TA production and its major influencing factors. The 16.2% (6/37) of total wine grape samples showed TA contamination with 4% (1/25) of incidence in healthy samples (77 μg·kg-1) and 42% (5/12) in rotten samples (10-778 μg·kg-1). Malbec, Cabernet Sauvignon, and Syrah varieties showed TA contamination, whereas Bonarda, Ancelota, Torrontés, Semillón, and Chenin did not. During inoculation experiments in wine grapes, two of three strains were able to produce TA among the evaluated conditions and the highest TA production was observed at 15°C and 25°C after 24 days of incubation. Nutritional composition of grapes results appropriate for A. alternata infection and TA production and, together with the adequate field conditions, favors TA natural occurrence in wine grapes.
Collapse
Affiliation(s)
- Luciana P. Prendes
- Facultad de Ciencias Aplicadas a la IndustriaUniversidad Nacional de CuyoSan RafaelArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Sede CentralBuenos AiresArgentina
| | - Ariel R. Fontana
- Instituto de Biología Agrícola de MendozaConsejo Nacional de Investigaciones Científicas y Técnicas‐Universidad Nacional de CuyoChacras de CoriaArgentina
| | - María G. Merín
- Facultad de Ciencias Aplicadas a la IndustriaUniversidad Nacional de CuyoSan RafaelArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Sede CentralBuenos AiresArgentina
| | - Agustina D´ Amario Fernández
- Instituto de Biología Agrícola de MendozaConsejo Nacional de Investigaciones Científicas y Técnicas‐Universidad Nacional de CuyoChacras de CoriaArgentina
| | - Rubén Bottini
- Instituto de Biología Agrícola de MendozaConsejo Nacional de Investigaciones Científicas y Técnicas‐Universidad Nacional de CuyoChacras de CoriaArgentina
| | - María L. Ramirez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Sede CentralBuenos AiresArgentina
- Departamento de Microbiología e InmunologíaFacultad de Ciencias Exactas Físico‐Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
| | - Vilma I. Morata de Ambrosini
- Facultad de Ciencias Aplicadas a la IndustriaUniversidad Nacional de CuyoSan RafaelArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Sede CentralBuenos AiresArgentina
| |
Collapse
|
16
|
Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina. Int J Food Microbiol 2018; 266:14-20. [DOI: 10.1016/j.ijfoodmicro.2017.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 02/06/2023]
|
17
|
Puangkham S, Poapolathep A, Jermnak U, Imsilp K, Tanhan P, Chokejaroenrat C, Poapolathep S. Monitoring and health risk of mycotoxins in imported wines and beers consumed in Thailand. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of mycotoxins has been reported in a wide range of agricultural commodities including wine and beer. Due to the widespread consumption of these beverages, risk assessment of contamination by toxins is required for consumer health. In the present study, multi-residue analysis for the determination of mycotoxins was undertaken to survey the incidence of mycotoxins in imported wines and beers being commercialised in Thailand, and to assess the consumer health risk. Samples of red wines (100) and beers (100) were collected randomly from supermarkets and retail shops in Bangkok, Thailand and were extracted using the dispersive liquid-liquid micro-extraction procedure. The quantitation and confirmation of 19 mycotoxins were performed using liquid chromatography tandem-mass spectrometry with an electro-spray ionisation interface in the multiple-reaction monitoring mode. The results demonstrated that the wine and beer samples were contaminated with mycotoxins at 35 and 13%, respectively. The most prominent mycotoxins found in wines were Alternaria toxins, ochratoxin A, and fumonisins, whereas zearalenone and deoxynivalenol were the most prevalent mycotoxins found in contaminated beers. However, ochratoxin A levels were far below the maximum limits established by the European Union. As indicated by the risk assessment, mycotoxin exposure via imported wines and beers were at safe levels in the Bangkok urban area.
Collapse
Affiliation(s)
- S. Puangkham
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - A. Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - U. Jermnak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - K. Imsilp
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - P. Tanhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - C. Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - S. Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Rico-Yuste A, Walravens J, Urraca JL, Abou-Hany RAG, Descalzo AB, Orellana G, Rychlik M, De Saeger S, Moreno-Bondi MC. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Chem 2017; 243:357-364. [PMID: 29146349 DOI: 10.1016/j.foodchem.2017.09.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λex=258nm; λem=440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg-1 range in both samples.
Collapse
Affiliation(s)
- A Rico-Yuste
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - J Walravens
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium.
| | - J L Urraca
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; CEI Campus Moncloa, UCM-UPM, Avenida Complutense, s/n, ES-28040 Madrid, Spain.
| | - R A G Abou-Hany
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - A B Descalzo
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - G Orellana
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - M Rychlik
- Technische Universität München, Chair of Analytical Food Chemistry, Alte Akademie 10, DE-85354 Freising, Germany.
| | - S De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium.
| | - M C Moreno-Bondi
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Kong D, Xie Z, Liu L, Song S, Zheng Q, Kuang H. Development of an immunochromatographic assay for the detection of alternariol in cereal and fruit juice samples. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1326469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dezhao Kong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Zhengjun Xie
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Qiankun Zheng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
20
|
Prendes L, Zachetti V, Pereyra A, Morata de Ambrosini V, Ramirez M. Water activity and temperature effects on growth and mycotoxin production byAlternaria alternatastrains isolated from Malbec wine grapes. J Appl Microbiol 2017; 122:481-492. [DOI: 10.1111/jam.13351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- L.P. Prendes
- Facultad de Ciencias Aplicadas a la Industria; Universidad Nacional de Cuyo; San Rafael Mendoza Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Sede Central Buenos Aires Argentina
| | - V.G.L. Zachetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Sede Central Buenos Aires Argentina
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - A. Pereyra
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - V.I. Morata de Ambrosini
- Facultad de Ciencias Aplicadas a la Industria; Universidad Nacional de Cuyo; San Rafael Mendoza Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Sede Central Buenos Aires Argentina
| | - M.L. Ramirez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Sede Central Buenos Aires Argentina
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| |
Collapse
|
21
|
Abstract
Alternariais one of the major mycotoxigenic fungal genera with more than 70 reported metabolites.Alternariamycotoxins showed notably toxicity, such as mutagenicity, carcinogenicity, induction of DNA strand break, sphingolipid metabolism disruption, or inhibition of enzymes activity and photophosphorylation. This review reports on the toxicity, stability, metabolism, current analytical methods, and prevalence ofAlternariamycotoxins in food and feed through the most recent published research. Half of the publications were focused on fruits, vegetables, and derived products—mainly tomato and apples—while cereals and cereal by-products represented 38%. The most studied compounds were alternariol, alternariol methyl ether, tentoxin, and tenuazonic acid, but altenuene, altertoxins (I, II, and III), and macrosporin have been gaining importance in recent years. Solid-liquid extraction (50%) with acetonitrile or ethyl acetate was the most common extraction methodology, followed by QuEChERS and dilution-direct injection (both 14%). High- and ultraperformance liquid chromatography coupled with tandem mass spectrometry was the predominant determination technique (80%). The highest levels of alternariol and alternariol methyl ether were found in lentils, oilseeds, tomatoes, carrots, juices, wines, and cereals. Tenuazonic acid highest levels were detected in cereals followed by beer, while alternariol, alternariol methyl ether, tenuazonic acid, and tentoxin were found in legumes, nuts, and oilseeds.
Collapse
|
22
|
Mycobiota and toxicogenic Alternaria spp. strains in Malbec wine grapes from DOC San Rafael, Mendoza, Argentina. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Myresiotis CK, Testempasis S, Vryzas Z, Karaoglanidis GS, Papadopoulou-Mourkidou E. Determination of mycotoxins in pomegranate fruits and juices using a QuEChERS-based method. Food Chem 2015; 182:81-8. [DOI: 10.1016/j.foodchem.2015.02.141] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 02/22/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
|
24
|
Vargas Trinidad A, Quevedo Ganoza F, Fernández Pinto V, Patriarca A. Determination of mycotoxin profiles characteristic ofAlternariastrains isolated from Malbec grapes. BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150502004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
25
|
Identification, characterization and mycotoxigenic ability of Alternaria spp. causing core rot of apple fruit in Greece. Int J Food Microbiol 2015; 197:22-9. [DOI: 10.1016/j.ijfoodmicro.2014.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/26/2014] [Accepted: 12/09/2014] [Indexed: 11/22/2022]
|
26
|
Garrido CE, González HHL, Salas MP, Resnik SL, Pacin AM. Mycoflora and mycotoxin contamination of Roundup Ready soybean harvested in the Pampean Region, Argentina. Mycotoxin Res 2013; 29:147-57. [PMID: 23765598 DOI: 10.1007/s12550-013-0169-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Abstract
A total of 89 freshly harvested soybean seed samples (Roundup Ready [transgenic] soybean cultivars) from the 2010/2011 crop season were collected from five locations in the Northern Pampean Region II, Argentina. These samples were analyzed for internal mycoflora, toxin production of isolated fungi, and for a range of mycotoxins. Mycotoxin analysis of aflatoxins (AFs), zearalenone (ZEA), fumonisins (FBs) and ochratoxin A (OTA) was done by HPLC-FLD (high performance liquid chromatography with postcolumn fluorescence derivatization), alternariol and alternariol monomethyl ether with HPLC-UV (HPLC with UV detection), trichothecenes (deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin, fusarenon X, 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol were analyzed by GC-ECD (gas chromatography with electron capture detector). Fungal colonization was more frequently found for samples from América, Saladillo and Trenque Lauquen than for samples from General Villegas and Trenel; a total of 1,401 fungal isolates were obtained from the soybean seeds. The most commonly identified fungal genera were Alternaria, Sclerotinia, Chaetomium, Cladosporium, Aspergillus, Penicillium, Phomopsis and Fusarium. Alternaria alternata, A.tenuissima, Aspergillus flavus, Penicillium citrinum, Fusarium verticillioides and F.semitectum were the predominant toxigenic fungal species. Mycotoxin production was confirmed for several isolates of toxigenic species, including Aspergillus flavus, A. parasiticus, Alternaria alternata, A.tenuissima, Fusarium graminearum, F semitectum and F. verticillioides. In particular, the percentage of mycotoxigenic Alternaria alternata (100%), A.tenuissima (95%) and aflatoxigenic strains of A. flavus (57%) were remarkably high. Although none of the mycotoxins, AFs, ZEA, FBs, trichothecenes and OTA, were directly detected in samples of soybean seeds, the frequent presence of toxigenic fungal species indicates the risk of multiple mycotoxin contamination.
Collapse
Affiliation(s)
- Carolina E Garrido
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|