1
|
Fan G, Chen W, He J, Wang D, Yang X. Bile acids alleviate intestinal inflammation by modulating gut microbiota composition in LPS-challenged broilers. Res Vet Sci 2024; 184:105526. [PMID: 39755074 DOI: 10.1016/j.rvsc.2024.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/10/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Previous research has identified bile acids (BAs) as a valuable supplement for animal feed, especially in the poultry industry. However, there is limited research on the use of bile acids as a preventative measure against intestinal inflammation in broilers. This study aims to investigate the impact of dietary BAs on LPS-triggered intestinal inflammation in broilers. 180 Arbor Acres broilers were randomly divided into four group: (1) broilers receiving a standard diet (Con group); (2) broilers from the Con category subjected to LPS challenge (LPS group); (3) broilers on a diet supplemented with BAs compound and exposed to LPS (BA+LPS group); and (4) broilers on a diet enriched with lithocholic acid (LCA) and challenged with LPS (LCA + LPS group).The results showed that the LPS challenge caused a notable rise in liver mass, plasma AST concentrations, and levels of inflammatory cytokines (P < 0.05). BAs compounds or LCA improved intestinal morphological damage, inflammation response and bile acid metabolism (P < 0.05). Furthermore, analysis of 16S rRNA gene sequences revealed that supplementation with BAs compounds or LCA mitigated the reduction in bacterial diversity, while also increasing the abundance of operational taxonomic units (OTUs) associated with Bacteroides and Bifidobacterium. Additionally, the increased abundance of Candidatus_Arthromitus due to BAs compound or LCA supplementation showed a significant negative correlation with the concentrations of intestinal inflammatory cytokines (P < 0.05). These results suggest that the supplementation of BAs compound or LCA has the potential to alleviate intestinal inflammation and regulate gut microbiota in broilers subjected to LPS challenge.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjing Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianxing He
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Xu Q, Gong H, Zhou M, Guo J, Chen S, Xiao K, Liu Y. Necroptosis contributes to deoxynivalenol-induced liver injury and inflammation in weaned piglets. J Anim Sci Biotechnol 2024; 15:160. [PMID: 39623511 PMCID: PMC11613918 DOI: 10.1186/s40104-024-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of necroptosis in deoxynivalenol (DON)-induced liver injury and inflammation in weaned piglets. METHODS In Exp. 1, 12 weaned piglets were divided into 2 groups including pigs fed basal diet and pigs fed diet contaminated with 4 mg/kg DON for 21 d. In Exp. 2, 12 weaned piglets were divided into 2 groups including control piglets and piglets given a gavage of 2 mg/kg body weight (BW) DON. In Exp. 3, 24 weaned piglets were used in a 2 × 2 factorial design and the main factors including necrostatin-1 (Nec-1) (DMSO or 0.5 mg/kg BW Nec-1) and DON challenge (saline or 2 mg/kg BW DON gavage). On 21 d in Exp. 1, or at 6 h post DON gavage in Exp. 2 and 3, pigs were killed for blood samples and liver tissues. Liver histology, blood biochemical indicators, and liver inflammation and necroptosis signals were tested. RESULTS Dietary or oral gavage with DON caused liver morphological damage in piglets. Dietary DON led to hepatocyte damage indicated by increased aspartate transaminase (AST) activity and AST/alanine aminotransferase (ALT) ratio, and DON gavage also caused hepatocyte damage and cholestasis indicated by increased AST and alkaline phosphatase (AKP) activities. Dietary DON caused liver necroptosis indicated by increased protein abundance of total receptor interacting protein kinase 3 (t-RIP3) and total mixed lineage kinase domain-like protein (t-MLKL). Moreover, DON gavage increased mRNA expression of interleukin (IL)-6 and IL-1β in liver. DON gavage also induced liver necroptosis demonstrated by increased protein abundance of t-RIP3, phosphorylated-RIP3 (p-RIP3), t-MLKL and p-MLKL. However, pretreatment with Nec-1, a specific inhibitor of necroptosis, inhibited liver necroptosis indicated by decreased protein expression of t-RIP3, p-RIP3, t-MLKL and p-MLKL. Nec-1 pretreatment reduced liver morphological damage after DON gavage. Pretreatment with Nec-1 also attenuated liver damage induced by DON indicated by decreased activities of AST and AKP. Furthermore, Nec-1 pretreatment inhibited liver mRNA expression of IL-6 and IL-1β after DON challenge. CONCLUSIONS Our data demonstrate for the first time that necroptosis contributes to DON-induced liver injury and inflammation in piglets.
Collapse
Affiliation(s)
- Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hanqiu Gong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
3
|
Miao J, Cui L, Zeng H, Hou M, Wang J, Hang S. Lactiplantibacillus plantarum L47 and inulin affect colon and liver inflammation in piglets challenged by enterotoxigenic Escherichia coli through regulating gut microbiota. Front Vet Sci 2024; 11:1496893. [PMID: 39664894 PMCID: PMC11631943 DOI: 10.3389/fvets.2024.1496893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Infection by pathogenic bacteria during weaning is a common cause of diarrhea and intestinal inflammation in piglets. Supplementing the diet with synbiotics is beneficial for animal health. The strain of Lactiplantibacillus plantarum L47 (L47) isolated in our lab exhibited good probiotic properties when combined with inulin. Here, the effectiveness of combining L47 and inulin (CLN) in protecting against enterotoxigenic Escherichia coli (ETEC) induced colon and liver inflammation in weaned piglets was evaluated. Methods Twenty-eight piglets aged 21 days were randomly assigned into 4 groups: CON (control), LI47 (oral CLN culture fluid, 1010 CFU/d of L47 and 1 g/d of inulin), ECON (oral ETEC culture fluid, 1010 CFU/d), and ELI47 (oral CLN and ETEC culture fluid). After 24 days, the colon and liver samples were collected for further analysis. Results and discussion CLN alleviated colon damage caused by ETEC challenge, as evidenced by an increase of colonic crypt depth, mRNA expression of tight junction Claudin-1 and Occludin, GPX activity, the concentration of IL-10 and sIgA (p < 0.05). Moreover, there was a decrease in MDA activity, the load of E. coli, the concentration of LPS, gene expression of TLR4, and the concentration of TNF-α and IL-6 (p < 0.05) in colonic mucosa. Additionally, CLN counteracted liver damage caused by ETEC challenge by modulating pathways associated with immunity and disease occurrence (p < 0.05). Conclusion Supplementing with CLN alleviated colon inflammation induced by ETEC challenge by decreasing the E. coli/LPS/TLR4 pathway and regulating hepatic immune response and disease-related pathways, suggesting that CLN could protect intestinal and liver health in animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Sauvé B, Chorfi Y, Létourneau-Montminy MP, Guay F. Vitamin 25(OH)D 3, E, and C Supplementation Impact the Inflammatory and Antioxidant Responses in Piglets Fed a Deoxynivalenol-Contaminated Diet and Challenged with Lipopolysaccharides. Toxins (Basel) 2024; 16:297. [PMID: 39057937 PMCID: PMC11281576 DOI: 10.3390/toxins16070297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Using alternative ingredients or low-quality grain grades to reduce feeding costs for pig diets can introduce mycotoxins such as deoxynivalenol (DON) into feed, which is known to induce anorexia, inflammation, and oxidative stress. Adding vitamin 25(OH)D3 or vitamins E and C to the feed could increase piglets' immune system to alleviate the effects of DON. This study used 54 pigs (7.8 ± 0.14 kg) in 27 pens (2 pigs/pen) with a vitamin 25(OH)D3 or vitamin E-C supplementation, or their combination, in DON-contaminated (5.1 mg/kg) feed ingredients over 21 days followed by a lipopolysaccharide (LPS) challenge (20 µg/kg BW) 3 h prior to euthanasia for 1 piglet per pen. DON contamination induced anorexia, which reduced piglet growth. DON also induced immunomodulation, oxidative stress, and downregulated vitamin D status. The vitamin E and C supplementation and the combination of vitamins E, C, and 25(OH)D3 provided protection against DON contamination by not only decreasing blood and liver oxidative stress markers, but also by increasing antioxidant enzymes and tocopherol levels in blood, indicating improved antioxidant defense mechanisms. The combination of vitamins also restored the vitamin D status. After LPS challenge, DON contamination decreased intestinal and liver antioxidant statuses and increased inflammation markers. The addition of vitamins E and C to DON-contaminated feed reduced markers of inflammation and improved the antioxidant status after the LPS immune stimulation. The combination of all these vitamins also reduced the oxidative stress markers and the inflammation in the intestine and mesenteric lymph nodes, suggesting an anti-inflammatory effect.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, University of Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Nossol C, Landgraf P, Oster M, Kahlert S, Barta-Böszörmenyi A, Kluess J, Wimmers K, Isermann B, Stork O, Dieterich DC, Dänicke S, Rothkötter HJ. Deoxynivalenol triggers the expression of IL-8-related signaling cascades and decreases protein biosynthesis in primary monocyte-derived cells. Mycotoxin Res 2024; 40:279-293. [PMID: 38498144 PMCID: PMC11043135 DOI: 10.1007/s12550-024-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Humans and their immune system are confronted with mold-contaminated food and/or mold-contaminated air in daily life and indoor activities. This results in metabolic stress and unspecific disease symptoms. Other studies provided evidence that exposure to mold is associated with the etiology of allergies. Deoxynivalenol (DON) is of great concern due to its frequent occurrence in toxically relevant concentrations. The exposure to this toxin is a permanent health risk for both humans and farm animals because DON cannot be significantly removed during standard milling and processing procedures. However, the direct effect on immunity or hematology is poorly defined because most investigations could not separate the effect of DON-contaminated feed intake. Due to the widespread distribution of DON after rapid absorption, it is not surprising that DON is known to affect the immune system. The immune system of the organism has one important function, to defend against the invasion of unknown substances/organisms. This study shows for the first time a synergistic effect of both-low physiological DON-doses in combination with low LPS-doses with the focus on the IL-8 expression on protein and RNA level. Both doses were found in vivo. IL-8 together with other anorectic cytokines like IL-1β can affect the food intake and anorexia. We could also show that a calcium-response is not involved in the increased IL-8 production after acute DON stimulation with high or low concentrations.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - P Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - M Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - S Kahlert
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - A Barta-Böszörmenyi
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - J Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116, Braunschweig, Germany
| | - K Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - B Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, Paul-List-Str. 13-15, 04103, Leipzig, Germany
| | - O Stork
- Institute of Biology, Faculty of Natural Science, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - D C Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116, Braunschweig, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| |
Collapse
|
6
|
Sauvé B, Chorfi Y, Montminy MPL, Guay F. Vitamin D Supplementation Impacts Calcium and Phosphorus Metabolism in Piglets Fed a Diet Contaminated with Deoxynivalenol and Challenged with Lipopolysaccharides. Toxins (Basel) 2023; 15:394. [PMID: 37368695 DOI: 10.3390/toxins15060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and-more recently-alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and 25-OH-D3 to the feed could modify the effects of DON in piglets. In this study, vitamin D3 or 25-OH-D3 supplementation was used in a control or DON-contaminated treatment. A repetitive exposure over 21 days to DON in the piglets led to disruptions in the vitamin D, calcium, and phosphorus metabolisms, resulting in a decreased growth performance, increased bone mineralization, and the downregulation of genes related to calcium and to phosphorus intestinal and renal absorption. The DON challenge also decreased blood concentrations of 25-OH-D3, 1,25-(OH)2-D3, and phosphate. The DON contamination likely decreased the piglets' vitamin D status indirectly by modifying the calcium metabolism response. Vitamin D supplementations did not restore vitamin D status or bone mineralization. After a lipopolysaccharide-induced inflammatory stimulation, feeding a 25-OH-D3 supplementation increased 25-OH-D3 concentration and 1,25-(OH)2-D3 regulations during the DON challenge. DON contamination likely induced a Ca afflux by altering the intestinal barrier, which resulted in hypercalcemia and hypovitaminosis D. The vitamin D supplementation could increase the calcitriol production to face the combined LPS and DON challenge.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, Montreal University, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Tan L, Li Q, Sun C, Li W, Tang N, Tang K. An Efficient HPLC-PDA Coupled With Supel™ Tox DON SPE Approach for the Analysis of Deoxynivalenol Contamination in Cereal Grains and Feedstuffs in Jiangxi Province. J Food Prot 2023; 86:100022. [PMID: 36916602 DOI: 10.1016/j.jfp.2022.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Deoxynivalenol (DON) was commonly found in grains and feedstuffs, which can cause human chronic diseases. In this study, a quick and reliable method was developed for the determination of DON in grains and feedstuffs in Jiangxi Province market. The sample was extracted with acetonitrile-water (84:16, v/v), then purified by Supel™ Tox DON SPE column, and detected by high-performance liquid chromatography (HPLC). The results showed that the calibration curve of DON showed good linearity in the range of 0.01-10.0 μg/mL, and the correlation coefficient R2 = 0.9999. The recovery of DON in the spiked maize sample was 94.8-98.5% by spiking with DON at 0.2 µg/g, 1.0 µg/g, and 2.0 µg/g. The RSD was between 2.5 and 3.3%. This method was used to analyze 120 samples, including 90 grains and 30 feedstuffs, collected from the Jiangxi Province market. The results showed that 81 samples of grains were positive with 90.0% positive rates, and 30 samples of feedstuff were positive with 100% positive rates. Maximum concentration of DON was 0.7 μg/g in oat and 6.9 μg/g in wheat feedstuffs, respectively. Fortunately, the positive samples of grains were safe levels in comparison with National standards for food safety limits of mycotoxins in food (1.0 μg/g), while, the feedstuff of oats was over the Maximum Guideline Level of 16.7% (the Maximum Residue Limit, MRL is 5.0 μg/g). The results of this study about current DON pollution in the grains and feedstuffs on the Jiangxi Province market have not been previously reported.
Collapse
Affiliation(s)
- Lin Tan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China; Agricultural and Rural Bureau of Tonggu County, Yichun 336200, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chao Sun
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Weiqiang Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Ninan Tang
- Wuxi Professional College of Science and Technology, Wuxi 214028, People's Republic of China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
8
|
The Influence of Fusarium Mycotoxins on the Liver of Gilts and Their Suckling Piglets. Animals (Basel) 2021; 11:ani11092534. [PMID: 34573499 PMCID: PMC8469335 DOI: 10.3390/ani11092534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Mycotoxins are toxic secondary metabolites of fungi that frequently contaminate animal feed and human food in different combinations; therefore, it is of great importance to determine the effects of mycotoxin co-contamination. Pigs are one of the most sensitive animal species to Fusarium mycotoxins, and the liver is an important site of mycotoxin metabolism. The objective of the present research was to determine histopathological changes, apoptosis, and proliferation in the liver of gilts fed with Fusarium mycotoxin-contaminated feed for a prolonged time at the end of their pregnancy and until weaning of their piglets. Additionally, the same parameters were evaluated in the liver of their piglets to determine whether Fusarium mycotoxins would affect the offspring. The results revealed increased hepatocellular necrosis and apoptosis as well as sinusoidal leukocytosis with inflammatory infiltrates of hepatic lobules in experimental gilts, but no significant changes were observed in the piglet livers, implying that the utilized concentrations and duration of exposure did not cause detrimental effects on them. Interestingly, the amount of interlobular connective tissue in the liver of experimental gilts was significantly decreased. The obtained results emphasized the need to evaluate Fusarium mycotoxin concentrations in feed because even at low concentrations, they can cause adverse effects, but there is less concern for severe detrimental effects on the offspring. Abstract Mycotoxins are common fungal secondary metabolites in both animal feed and human food, representing widespread toxic contaminants that cause various adverse effects. Co-contamination with different mycotoxins is frequent; therefore, this study focused on feed contaminated with Fusarium mycotoxins, namely, deoxynivalenol (5.08 mg/kg), zearalenone (0.09 mg/kg), and fusaric acid (21.6 mg/kg). Their effects on the liver of gilts and their piglets were chosen as the research subject as pigs are one of the most sensitive animal species that are also physiologically very similar to humans. The gilts were fed the experimental diet for 54 ± 1 day, starting late in their pregnancy and continuing until roughly a week after weaning of their piglets. Livers of gilts and their piglets were assessed for different histopathological changes, apoptosis, and proliferation activity of hepatocytes. On histopathology, gilts fed the experimental diet had a statistically significant increase in hepatocellular necrosis and apoptosis (p = 0.0318) as well as sinusoidal leukocytosis with inflammatory infiltrates of hepatic lobules (p = 0.0004). The amount of interlobular connective tissue in the liver of experimental gilts was also significantly decreased (p = 0.0232), implying a disruption in the formation of fibrous connective tissue. Apoptosis of hepatocytes and of cells in hepatic sinusoids, further assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, showed a statistically significant increase (p = 0.0224 and p = 0.0007, respectively). No differences were observed in piglet livers. These results indicated that Fusarium mycotoxins elicited increased apoptosis, necrosis, and inflammation in the liver of gilts, but caused no effects on the liver of piglets at these concentrations.
Collapse
|
9
|
Dänicke S, Heymann AK, Oster M, Wimmers K, Tesch T, Bannert E, Bühler S, Kersten S, Frahm J, Kluess J, Kahlert S, Rothkötter HJ, Billenkamp F. Does chronic dietary exposure to the mycotoxin deoxynivalenol affect the porcine hepatic transcriptome when an acute-phase response is initiated through first or second-pass LPS challenge of the liver? Innate Immun 2021; 27:388-408. [PMID: 34338001 PMCID: PMC8419296 DOI: 10.1177/17534259211030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sensitivity of pigs to deoxynivalenol (DON) might be increased by systemic inflammation (SI), which also has consequences for hepatic integrity. Liver lesions and a dys-regulated gene network might hamper hepatic handling and elimination of DON whereby the way of initiation of hepatic inflammation might play an additional role. First and second-pass exposure of the liver with LPS for triggering a SI was achieved by LPS infusion via pre- or post-hepatic venous route, respectively. Each infusion group was pre-conditioned either with a control diet (0.12 mg DON/kg diet) or with a DON-contaminated diet (4.59 mg DON/kg diet) for 4 wk. Liver transcriptome was evaluated at 195 min after starting infusions. DON exposure alone failed to modulate the mRNA expression significantly. However, pre- and post-hepatic LPS challenges prompted transcriptional responses in immune and metabolic levels. The mRNAs for B-cell lymphoma 2-like protein 11 as a key factor in apoptosis and IFN-γ released by T cells were clearly up-regulated in DON-fed group infused with LPS post-hepatically. On the other hand, mRNAs for nucleotide binding oligomerization domain containing 2, IFN-α and eukaryotic translation initiation factor 2α kinase 3 as ribosomal stress sensors were exclusively up-regulated in control pigs with pre-hepatic LPS infusion. These diverse effects were traced back to differences in TLR4 signalling.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Ann-Katrin Heymann
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Michael Oster
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Germany
| | - Tanja Tesch
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Erik Bannert
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Germany
| | | | - Fabian Billenkamp
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| |
Collapse
|
10
|
Wellington MO, Bosompem MA, Rodrigues LA, Columbus DA. Effect of long-term feeding of graded levels of deoxynivalenol on performance, nutrient utilization, and organ health of grower-finisher pigs (35 to 120 kg). J Anim Sci 2021; 99:6213884. [PMID: 33825833 DOI: 10.1093/jas/skab109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to evaluate the effect of long-term feeding of graded levels of deoxynivalenol (DON) on performance, nutrient utilization, and organ health of grower-finisher pigs. A total of 240 mixed-sex grower-finisher pigs (35.9 ± 1.1 kg initial body weight, BW) were randomly assigned to 1 of 4 dietary treatments (6 pigs/pen; 10 pens/treatment) for 77 d. Diets consisted of a control diet without DON (CONT) and diets containing 1, 3, or 5 ppm DON (DON1, DON3, or DON5). Nitrogen-balance was determined in 1 pig/pen during weeks 6 and 12 of the study. Growth performance measures were taken weekly for average daily feed intake (ADFI), average daily gain (ADG), and gain:feed (GF) until day 77. Blood samples were collected on days 0, 14, 42, 56, and 84 from 1 pig/pen for analysis of indicators of liver and kidney function. On day 7, ADG and ADFI for pigs fed DON3 and DON5 diets were lower (P < 0.05) compared with DON1- and CONT-fed pigs. Overall, ADG and ADFI (days 0 to 77) were lower in DON3- and DON5-fed pigs compared with CONT and DON1 pigs (P < 0.05), with no difference in GF (P > 0.05). Final BW was reduced in DON3- and DON5-fed pigs (P < 0.05) compared with CONT and DON1, which were not different (P > 0.05). No significant (P > 0.05) treatment effects were observed on carcass characteristics. In the grower-phase, protein deposition (PD) was reduced in DON3 and DON5 pigs compared with CONT and DON1 pigs (P < 0.05). In the finisher phase, PD was not affected by dietary treatment (P > 0.05). There was no effect of dietary treatment on the majority of selected serum chemistry (P > 0.05). In summary, pigs exposed to diets containing > 1 ppm DON had reduced growth performance with little or no effect on nitrogen utilization, organ health, or carcass characteristics, suggesting that the negative effects of DON may be largely due to depressed feed intake.
Collapse
Affiliation(s)
- Michael O Wellington
- Prairie Swine Centre, Inc., Saskatoon, SK, S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Michael A Bosompem
- Prairie Swine Centre, Inc., Saskatoon, SK, S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK, S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK, S7H 5N9, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
11
|
Cai G, Liu S, Zhong F, Gu J, Yuan Y, Zhu J, Zhu G, Liu Z, Zou H, Bian J. Zearalenone and deoxynivalenol inhibited IL-4 receptor-mediated Th2 cell differentiation and aggravated bacterial infection in mice. Toxicol Appl Pharmacol 2021; 415:115441. [PMID: 33556388 DOI: 10.1016/j.taap.2021.115441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023]
Abstract
The immunotoxicity of zearalenone (ZEA) and deoxynivalenol (DON), two of the most common environmental mycotoxins, has been well investigated. However, due to the complexity of the immune system, especially during bacterial infection, many types of immune cells are involved in invasion resistance and bacterial clearance. Of these, T helper 2 (Th2) cells, which are members of the helper T cell family, assist B cells to activate and differentiate into antibody-secreting cells, participate in humoral immune response, and, ultimately, eliminate pathogens. Thus, it is important to identify the stage at which these toxins affect the immune function, and to clarity the underlying mechanisms. In this study, mice infected with Listeria monocytogenes (Listeria) were used to study the effects of ZEA, DON, and ZEA + DON on Th2 differentiation, Interleukin-4 Receptor (IL-4R) expression, costimulatory molecules expression and cytokine secretion after Listeria infection. Naive CD4+ T cells, isolated from mice, were used to verify the in vivo effects and the associated mechanisms. In vivo experiments showed that these toxins aggravated spleen damage after Listeria infection and reduced the differentiation of Th2 cells by affecting the synthesis of IL-4R of CD4+ T cells. In addition, the level of the costimulatory molecule CD154 decreased. Consistent with this, in vitro studies showed that these toxins inhibited the differentiation of mouse naive CD4+ T cell into Th2 subtype and decreased IL-4R levels. In addition, the levels of costimulatory molecules CD154, CD278 and the Th2 cells secrete cytokines IL-4, IL-6, and IL-10 decreased. Based on our in vivo and in vitro experiments, we suggest that ZEA, DON, and ZEA + DON inhibit the expression of costimulatory molecules on CD4+ T cell, and inhibit the IL-4R-mediated Th2 cell differentiation. This may indicate that the body cannot normally resist or clear the pathogen after mycotoxin poisoning.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Shuangshuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - JiaQiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
12
|
Dänicke S, Bannert E, Tesch T, Kersten S, Frahm J, Bühler S, Sauerwein H, Görs S, Kahlert S, Rothkötter HJ, Metges CC, Kluess J. Oral exposure of pigs to the mycotoxin deoxynivalenol does not modulate the hepatic albumin synthesis during a LPS-induced acute-phase reaction. Innate Immun 2020; 26:716-732. [PMID: 32703050 PMCID: PMC7787558 DOI: 10.1177/1753425920937778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of pigs to deoxynivalenol (DON) might be influenced by systemic
inflammation (SI) which impacts liver. Besides following acute-phase proteins,
our aim was to investigate both the hepatic fractional albumin (ALB) synthesis
rate (FSR) and the ALB concentration as indicators of ALB metabolism in presence
and absence of SI induced by LPS via pre- or post-hepatic venous route. Each
infusion group was pre-conditioned either with a control diet (CON, 0.12 mg
DON/kg diet) or with a DON-contaminated diet (DON, 4.59 mg DON/kg diet) for 4
wk. A depression of ALB FSR was observed 195 min after LPS challenge,
independent of feeding group or LPS application route, which was not paralleled
by a down-regulated ALB mRNA expression but by a reduced availability of free
cysteine. The drop in ALB FSR only partly explained the plasma ALB
concentrations which were more depressed in the DON-pre-exposed groups,
suggesting that ALB levels are influenced by further mechanisms. The abundances
of haptoglobin, C-reactive protein, serum amyloid A, pig major acute-phase
protein, fibrinogen and LPS-binding protein mRNA were up-regulated upon LPS
stimulation but not accompanied by increases in the plasma concentrations of
these proteins, pointing at an imbalance between synthesis and consumption.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Erik Bannert
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Tanja Tesch
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Helga Sauerwein
- Institute for Animal Science, Physiology and Hygiene, University of Bonn, Bonn, Germany
| | - Solvig Görs
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
13
|
Effects of Deoxynivalenol and Zearalenone on the Histology and Ultrastructure of Pig Liver. Toxins (Basel) 2020; 12:toxins12070463. [PMID: 32698427 PMCID: PMC7404993 DOI: 10.3390/toxins12070463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study was to determine the effects of single and combined administrations of deoxynivalenol (DON) and zearalenone (ZEN) on the histology and ultrastructure of pig liver. The study was performed on immature gilts, which were divided into four equal groups. Animals in the experimental groups received DON at a dose of 12 μg/kg body weight (BW) per day, ZEN at 40 μg/kg BW per day, or a mixture of DON (12 μg/kg BW per day) and ZEN (40 μg/kg BW). The control group received vehicle. The animals were killed after 1, 3, and 6 weeks of experiment. Treatment with mycotoxins resulted in several changes in liver histology and ultrastructure, including: (1) an increase in the thickness of the perilobular connective tissue and its penetration to the lobules in gilts receiving DON and DON + ZEN; (2) an increase in the total microscopic liver score (histology activity index (HAI)) in pigs receiving DON and DON + ZEN; (3) dilatation of hepatic sinusoids in pigs receiving ZEN, DON and DON + ZEN; (4) temporary changes in glycogen content in all experimental groups; (5) an increase in iron accumulation in the hepatocytes of gilts treated with ZEN and DON + ZEN; (6) changes in endoplasmic reticulum organization in the hepatocytes of pigs receiving toxins; (7) changes in morphology of Browicz-Kupffer cells after treatment with ZEN, DON, and DON + ZEN. The results show that low doses of mycotoxins used in the present study, even when applied for a short period, affected liver morphology.
Collapse
|
14
|
Alassane-Kpembi I, Canlet C, Tremblay-Franco M, Jourdan F, Chalzaviel M, Pinton P, Cossalter AM, Achard C, Castex M, Combes S, Bracarense APL, Oswald IP. 1H-NMR metabolomics response to a realistic diet contamination with the mycotoxin deoxynivalenol: Effect of probiotics supplementation. Food Chem Toxicol 2020; 138:111222. [PMID: 32145353 DOI: 10.1016/j.fct.2020.111222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/18/2023]
Abstract
Low-level contamination of food and feed by deoxynivalenol (DON) is unavoidable. We investigated the effects of subclinical treatment with DON, and supplementation with probiotic yeast Saccharomyces cerevisiae boulardii I1079 as a preventive strategy in piglets. Thirty-six animals were randomly assigned to either a control diet, a diet contaminated with DON (3 mg/kg), a diet supplemented with yeast (4 × 109 CFU/kg), or a DON-contaminated diet supplemented with yeast, for four weeks. Plasma and tissue samples were collected for biochemical analysis,1H-NMR untargeted metabolomics, and histology. DON induced no significant modifications in biochemical parameters. However, lesion scores were higher and metabolomics highlighted alterations of amino acid and 2-oxocarboxylic acid metabolism. Administering yeast affected aminoacyl-tRNA synthesis and amino acid and glycerophospholipid metabolism. Yeast supplementation of piglets exposed to DON prevented histological alterations, and partial least square discriminant analysis emphasised similarity between the metabolic profiles of their plasma and that of the control group. The effect on liver metabolome remained marginal, indicating that the toxicity of the mycotoxin was not eliminated. These findings show that the 1H-NMR metabolomics profile is a reliable biomarker to assess subclinical exposure to DON, and that supplementation with S. cerevisiae boulardii increases the resilience of piglets to this mycotoxin.
Collapse
Affiliation(s)
- Imourana Alassane-Kpembi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Université D'Abomey-Calavi, Ecole Polytechnique D'Abomey, Calavi, Benin.
| | - Cecile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | | | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Anne Marie Cossalter
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Caroline Achard
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France.
| | - Mathieu Castex
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France.
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France.
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
15
|
Peng Z, Liao Y, Wang X, Chen L, Wang L, Qin C, Wang Z, Cai M, Hu J, Li D, Yao P, Nüssler AK, Liu L, Yang W. Heme oxygenase-1 regulates autophagy through carbon-oxygen to alleviate deoxynivalenol-induced hepatic damage. Arch Toxicol 2019; 94:573-588. [PMID: 31848666 DOI: 10.1007/s00204-019-02649-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Deoxynivalenol (DON) cannot be totally removed due to its stable chemical characteristics and chronic exposure to low doses of DON causes significant toxic effects in humans and animals. However, the potential hazard of such low-dose exposure in target organs still remains not completely understood, especially in liver, which is mainly responsible for detoxification of DON. In the present study, we demonstrated for the first time that estimated human daily DON exposure (25 μg/kg bw) for 30 and 90 days caused low-grade inflammatory infiltration around hepatic centrilobular veins, elevated systemic IL-1β, IL-6 and TNF-α and impaired liver function evidenced by increased serum ALT activity. At the molecular level, expressions of autophagy-related proteins as well as Cleaved Caspase-3 and Cleaved Caspase-7 were upregulated during DON exposure, which indicated the activation of autophagy and apoptosis. Importantly, AAV-mediated liver-specific overexpression of HO-1 reversed DON-induced liver damages, upregulated autophagy and attenuated apoptosis in liver, while AAV-mediated HO-1 silence aggravated DON-induced liver damages, inhibited autophagy and increased apoptosis. Furthermore, in vitro experiments demonstrated that lentivirus-mediated HO-1 overexpression in Hepa 1-6 cells prolonged the duration of autophagy and delayed the onset of apoptosis. HO-1 silence in Hepa 1-6 cells inhibited activation of autophagy and accelerated occurrence of apoptosis, and these could be recovered by CO pre-treatment. Therefore, we suppose that HO-1 might be a potential research target to protect human and animal from liver injuries induced by low dose of DON exposure.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Liangliang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China. .,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
16
|
Peng Z, Liao Y, Chen L, Liu S, Shan Z, Nüssler AK, Yao P, Yan H, Liu L, Yang W. Heme oxygenase-1 attenuates low-dose of deoxynivalenol-induced liver inflammation potentially associating with microbiota. Toxicol Appl Pharmacol 2019; 374:20-31. [PMID: 31034930 DOI: 10.1016/j.taap.2019.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022]
|
17
|
Kahlert S, Renner L, Kluess J, Frahm J, Tesch T, Bannert E, Kersten S, Dänicke S, Rothkötter HJ. Effects of deoxynivalenol-feed contamination on circulating LPS in pigs. Innate Immun 2019; 25:168-175. [PMID: 30760085 PMCID: PMC6830939 DOI: 10.1177/1753425919829552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Low concentration of LPS can be detected in healthy mammals without triggering
systemic inflammation. Here we analysed the influence of the mycotoxin
deoxynivalenol (DON) on very low LPS concentrations and the role of DON in the
physiology of pigs challenged with high artificial LPS dosage mimicking septic
shock. Pigs were fed for 29 d with DON-contaminated (4.59 mg/kg feed) or control
feed. Samples of control animals showed 6.6 ± 13.5 pg/ml LPS in portal and
3.1 ± 7.6 pg/ml LPS in jugular serum samples. In the DON fed group,
3.4 ± 7.2 pg/ml and 0.6 ± 0.8 pg/ml were detected. The differences were
statistically not significant, indicating that DON is not a trigger for enhanced
LPS transfer into the blood circulation. Next, pigs were challenged with 7.5 µg
LPS/kg body mass via portal or jugular route. The application route did not
significantly influence the LPS concentration. We expected higher circulating
LPS concentrations in the presence of DON due to the additional stress of liver
metabolism and reduced liver capacity to remove LPS from circulation. This
scenario is supported by tendency. In summary, we found that DON is unlikely to
influence LPS transfer in the gut; DON likely reduces the capacity for LPS
removal in septic shock conditions.
Collapse
Affiliation(s)
- Stefan Kahlert
- 1 Institute of Anatomy, Otto von Guericke University Magdeburg, Germany
| | - Lydia Renner
- 1 Institute of Anatomy, Otto von Guericke University Magdeburg, Germany
| | - Jeannette Kluess
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Tanja Tesch
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Erik Bannert
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Sven Dänicke
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | | |
Collapse
|
18
|
Dočkalová H, Horký P, Zeman L, Polák O, Skládanka J. Influence of Mycotoxins in Barley Monodiets on Growth Performance and Rats Liver Histology. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Bannert E, Tesch T, Kluess J, Winkler J, Frahm J, Kersten S, Kahlert S, Renner L, Rothkötter HJ, Dänicke S. On the distribution and metabolism of Fusarium-toxins along the gastrointestinal tract of endotoxaemic pigs. Arch Anim Nutr 2018; 72:163-177. [PMID: 29741131 DOI: 10.1080/1745039x.2018.1465261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate the potential modulatory effect of E. coli lipopolysaccharides (LPS) on residues of deoxynivalenol (DON), de-epoxy-deoxynivalenol (DOM-1), zearalenone (ZEN) and its metabolites α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), zearalanone (ZAN), α-zearalanol (α-ZAL) and β-zearalanol (β-ZAL) after pre- or post-hepatic administration along the gastrointestinal axis. Fifteen barrows were exposed to a naturally mycotoxin contaminated diet (4.59 mg DON/kg feed and 0.22 mg ZEN/kg feed) and equipped with jugular (ju) and portal (po) catheters. On sampling day (day 29), the barrows were infused with LPS or a control fluid (LPS, 7.5 µg/kg body weight; control, 0.9% NaCl) either pre- or post-hepatically, resulting in three infusion groups: CONju-CONpo, CONju-LPSpo and LPSju-CONpo. At 195 min relative to infusion start (210 min post-feeding), pigs were sacrificed and content of stomach and small intestine (proximal, medial and distal part) as well as faeces were collected. In all LPS-infused animals, higher amounts of dry matter were recovered irrespective of LPS entry site suggesting a reduced gastric emptying and a decreased gastrointestinal motility under endotoxaemic conditions. DON metabolism in the gastrointestinal tract (GIT) remained unaltered by treatments and included an increase in the proportion of DOM-1 along the GIT, particularly from distal small intestine to faeces. Variables describing ZEN metabolism suggest a stimulated biliary release of ZEN and its metabolites in LPS-infused groups, particularly in the LPSju-CONpo group. In conclusion, the GIT metabolism of ZEN was markedly influenced in endotoxaemic pigs whereby a jugular induction of an acute phase reaction was more effective than portal LPS infusion hinting at a strong hepatic first-pass effect.
Collapse
Affiliation(s)
- Erik Bannert
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Tanja Tesch
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Jeannette Kluess
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Janine Winkler
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Jana Frahm
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Susanne Kersten
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| | - Stefan Kahlert
- b Medical Faculty, Institute of Anatomy , Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Lydia Renner
- b Medical Faculty, Institute of Anatomy , Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Hermann-Josef Rothkötter
- b Medical Faculty, Institute of Anatomy , Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Sven Dänicke
- a Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health , Braunschweig , Germany
| |
Collapse
|
20
|
Bannert E, Tesch T, Kluess J, Valenta H, Frahm J, Kersten S, Kahlert S, Renner L, Rothkötter HJ, Dänicke S. Plasma kinetics and matrix residues of deoxynivalenol (DON) and zearalenone (ZEN) are altered in endotoxaemic pigs independent of LPS entry site. Mycotoxin Res 2017; 33:183-195. [DOI: 10.1007/s12550-017-0276-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/29/2023]
|