1
|
González-Jartín JM, Aguín O, Rodríguez-Cañás I, Alvariño R, Sainz MJ, Vieytes MR, Rial C, Piñón P, Salinero C, Alfonso A, Botana LM. First description of adenosine production by Gnomoniopsis smithogilvyi, causal agent of chestnut brown rot. World J Microbiol Biotechnol 2024; 40:148. [PMID: 38539025 PMCID: PMC10972910 DOI: 10.1007/s11274-024-03958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) is the main causal agent of chestnut brown rot on sweet chestnut worldwide. The rotting of nuts leads to alterations in the organoleptic qualities and decreased fruit production, resulting in significant economic losses. In 2021, there was an important outbreak of chestnut rot in southern Galicia (Spanish northwest). The profile of secondary metabolites from G. smithogilvyi was studied, especially to determine its capability for producing mycotoxins, as happens with other rotting fungi, due to the possible consequences on the safety of chestnut consumption. Secondary metabolites produced by isolates of G. smithogilvyi growing in potato dextrose agar (PDA) medium were identified using liquid chromatography coupled with high-resolution mass spectrometry. Three metabolites with interesting pharmacological and phyto-toxicological properties were identified based on their exact mass and fragmentation patterns, namely adenosine, oxasetin, and phytosphingosine. The capacity of G. smithogilvyi to produce adenosine in PDA cultures was assessed, finding concentrations ranging from 176 to 834 µg/kg. Similarly, the production of mycotoxins was ruled out, indicating that the consumption of chestnuts with necrotic lesions does not pose a health risk to the consumer in terms of mycotoxins.
Collapse
Affiliation(s)
- Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Farmacia, IDIS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Olga Aguín
- Estación Fitopatolóxica Areeiro, Deputación de Pontevedra, 36153, Pontevedra, Spain
| | - Inés Rodríguez-Cañás
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - María J Sainz
- Departamento de Producción Vegetal y Proyectos de Ingeniería, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Cristina Rial
- Estación Fitopatolóxica Areeiro, Deputación de Pontevedra, 36153, Pontevedra, Spain
| | - Pilar Piñón
- Estación Fitopatolóxica Areeiro, Deputación de Pontevedra, 36153, Pontevedra, Spain
| | - Carmen Salinero
- Estación Fitopatolóxica Areeiro, Deputación de Pontevedra, 36153, Pontevedra, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
2
|
Shan J, Peng F, Yu J, Li Q. Identification and Characterization of a Plant Endophytic Fungus Paraphaosphaeria sp. JRF11 and Its Growth-Promoting Effects. J Fungi (Basel) 2024; 10:120. [PMID: 38392792 PMCID: PMC10890554 DOI: 10.3390/jof10020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Endophytic fungi establish mutualistic relationships with host plants and can promote the growth and development of plants. In this study, the endophytic fungus JRF11 was isolated from Carya illinoinensis. Sequence analysis of the internal transcribed spacer (ITS) region and 18S rRNA gene combined with colonial and conidial morphology identified JRF11 as a Paraphaosphaeria strain. Plant-fungus interaction assays revealed that JRF11 showed significant growth-promoting effects on plants. In particular, JRF11 significantly increased the root biomass and soluble sugar content of plants. Furthermore, transcriptome analysis demonstrated that JRF11 treatment reprogrammed a variety of genes involved in plant mitogen-activated protein kinase (MAPK) signaling and starch and sucrose metabolism pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Our research indicates that beneficial endophytic fungi are able to interact with plants and exhibit outstanding plant growth-promoting activities.
Collapse
Affiliation(s)
- Jie Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
3
|
Zhao Y, Chen D, Duan H, Li P, Wu W, Wang X, Poapolathep A, Poapolathep S, Logrieco AF, Pascale M, Wang C, Zhang Z. Sample preparation and mass spectrometry for determining mycotoxins, hazardous fungi, and their metabolites in the environment, food, and healthcare. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Antifungal compound from marine Serratia marcescens BKACT and its potential activity against Fusarium sp. Int Microbiol 2022; 25:851-862. [PMID: 35900707 DOI: 10.1007/s10123-022-00268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Ecofriendly biocontrol agents to control pathogenic fungi are in demand globally. The present study evaluated the antifungal potentials of marine bacteria Serratia marcescens BKACT against eight different Fusarium species. A highest 75.5 ± 0.80% of mycelial inhibition was observed against Fusarium foetens NCIM 1330. Structural characterization of the purified compound was analyzed by GC-MS and NMR techniques; based on the analysis, it is confirmed as 2, 4-di-tert butyl phenol (2, 4-DTBP) with chemical structure C14H22O. At 0.53 mM concentration, purified compound inhibited complete spore germination of F. foetens NCIM 1330. In vitro assay showed complete inhibition of F. foetens NCIM 1330 on the wheat seeds. Tested concentration does not show any toxic effect on germination of the seeds. By this study, we conclude that, 2, 4-DTBP is a suitable candidate to be used as biocontrol agent against Fusarium infection.
Collapse
|
5
|
Montoya-Martínez AC, O'Donnell K, Busman M, Vaughan MM, McCormick SP, Santillán-Mendoza R, Pineda-Vaca D, Clapes-Garduño L, Fernández-Pavía SP, Ploetz RC, Benítez-Malvido J, Montero-Castro JC, Rodríguez-Alvarado G. Weeds Harbor Fusarium Species that Cause Malformation Disease of Economically Important Trees in Western Mexico. PLANT DISEASE 2022; 106:612-622. [PMID: 34569826 DOI: 10.1094/pdis-06-21-1339-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mango malformation disease (MMD) caused by Fusarium spp. is an important limiting factor in most production areas worldwide. Fusarium mexicanum and F. pseudocircinatum have been reported as causing MMD in Mexico. These two pathogens also cause a similar disease in Swietenia macrophylla (big-leaf mahogany malformation disease) in central western Mexico, and F. pseudocircinatum was recently reported as causing malformation disease in Tabebuia rosea (rosy trumpet) in the same region. These studies suggest that additional plant species, including weeds, might be hosts of these pathogens. The role that weed hosts might have in the disease cycle is unknown. The objectives of this work were to recover Fusarium isolates from understory vegetation in mango orchards with MMD, identify the Fusarium isolates through DNA sequence data, and determine whether F. mexicanum is capable of inducing disease in the weedy legume Senna uniflora (oneleaf senna). Additional objectives in this work were to compare Fusarium isolates recovered from weeds and mango trees in the same orchards by characterizing their phylogenetic relationships, assessing in vitro production of mycotoxins, and identifying their mating type idiomorph. A total of 59 Fusarium isolates from five species complexes were recovered from apical and lateral buds from four weed species. Two of the species within the F. fujikuroi species complex are known to cause MMD in Mexico. Trichothecene production was detected in five isolates, including F. sulawense and F. irregulare in the F. incarnatum-equiseti species complex and F. boothii in the F. sambucinum species complex. Both mating types were present among mango and weed isolates. This is the first report of herbaceous hosts harboring Fusarium species that cause mango malformation in Mexico. The information provided should prove valuable for further study of the epidemiological role of weeds in MMD and help manage the disease.
Collapse
Affiliation(s)
- Amelia C Montoya-Martínez
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, National Center for Agricultural Utilization Research, Peoria, IL 61604, U.S.A
| | - Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, National Center for Agricultural Utilization Research, Peoria, IL 61604, U.S.A
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, National Center for Agricultural Utilization Research, Peoria, IL 61604, U.S.A
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS, National Center for Agricultural Utilization Research, Peoria, IL 61604, U.S.A
| | - Ricardo Santillán-Mendoza
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
- Campo Experimental Ixtacuaco, CIRGOC, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tlapacoyan, Veracruz, México
| | - Daniela Pineda-Vaca
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | - Lyana Clapes-Garduño
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | - Sylvia P Fernández-Pavía
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| | - Randy C Ploetz
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031-3314, U.S.A
| | - Julieta Benítez-Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán 58190, México
| | | | - Gerardo Rodríguez-Alvarado
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58880, México
| |
Collapse
|
6
|
Deng S, Ma X, Chen Y, Feng H, Zhou D, Wang X, Zhang Y, Zhao M, Zhang J, Daly P, Wei L. LAMP Assay for Distinguishing Fusarium oxysporum and Fusarium commune in Lotus ( Nelumbo nucifera) Rhizomes. PLANT DISEASE 2022; 106:231-246. [PMID: 34494867 DOI: 10.1094/pdis-06-21-1223-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yields of edible rhizome from cultivation of the perennial hydrophyte lotus (Nelumbo nucifera) can be severely reduced by rhizome rot disease caused by Fusarium species. There is a lack of rapid field-applicable methods for detection of these pathogens on lotus plants displaying symptoms of rhizome rot. Fusarium commune (91%) and Fusarium oxysporum (9%) were identified at different frequencies from lotus samples showing symptoms of rhizome rot. Because these two species can cause different severity of disease and their morphology is similar, molecular diagnostic-based methods to detect these two species were developed. Based on the comparison of the mitochondrial genome of the two species, three specific DNA loci targets were found. The designed primer sets for conventional PCR, quantitative PCR, and loop-mediated isothermal amplification (LAMP) precisely distinguished the above two species when isolated from lotus and other plants. The LAMP detection limits were 10 pg/μl and 1 pg/μl of total DNA for F. commune and F. oxysporum, respectively. We also carried out field-mimicked experiments on lotus seedlings and rhizomes (including inoculated samples and field-diseased samples), and the results indicated that the LAMP primer sets and the supporting portable methods are suitable for rapid diagnosis of the lotus disease in the field. The LAMP-based detection method will aid in the rapid identification of whether F. oxysporum or F. commune is infecting lotus plants with symptoms of rhizome rot and can facilitate efficient pesticide use and prevent disease spread through vegetative propagation of Fusarium-infected lotus rhizomes.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Xin Ma
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yifan Chen
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P.R. China
| | - Hui Feng
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Dongmei Zhou
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Xiaoyu Wang
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Yong Zhang
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Min Zhao
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Jinfeng Zhang
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Paul Daly
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Lihui Wei
- Institute of Plant Protection, Key Lab of Food Quality and Safety of Jiangsu Province-State, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P.R. China
| |
Collapse
|
7
|
Amobonye A, Bhagwat P, Ranjith D, Mohanlall V, Pillai S. Characterisation, pathogenicity and hydrolytic enzyme profiling of selected Fusarium species and their inhibition by novel coumarins. Arch Microbiol 2021; 203:3495-3508. [PMID: 33912984 DOI: 10.1007/s00203-021-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
Three Fusarium species isolated locally were characterised by the amplification of their rDNA ITS region, host specificity, and hydrolytic enzyme production. The strains were identified as Fusarium pseudoanthophilum, which is being reported for the first time in South Africa, as well as F. foetens and F. fujikuroi. All the three strains were capable of infecting vegetables such as tomatoes, bell and cayenne peppers, belonging to the Solanaceae family. The Fusarium strains also showed significant production of cell wall degrading enzymes in vitro, such as amylase, cellulase, xylanase, and polygalacturonase, thus highlighting the possibilities of these enzymes as pathogenic factors. Subsequently, the strains were discovered to be susceptible to three halogenated coumarins. The most effective of the tested coumarins, 6-bromo3-2,2-dibromoacetyl-2H-chromen-2-one, showed MIC values of 0.125, 0.0625 and 0.125 mg/ml against F. foetens, F. pseudoanthophilum and F. fujikuroi, respectively. The antifungal potentials of the halogenated coumarins were confirmed in silico through PASS analysis, toxicity prediction and docking studies. Findings from this study demonstrate the use of these coumarins as potential control agents against the Fusarium species and other pathogenic fungi in general.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000, South Africa
| | - Divona Ranjith
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000, South Africa.
| |
Collapse
|