1
|
Jiao F, Xu J, Zhao Y, Ye C, Sun Q, Liu C, Huo B. Synergistic effects of fluid shear stress and adhesion morphology on the apoptosis and osteogenesis of mesenchymal stem cells. J Biomed Mater Res A 2022; 110:1636-1644. [DOI: 10.1002/jbm.a.37413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Fei Jiao
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Jiayi Xu
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Yang Zhao
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Chongyang Ye
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
| | - Chenglin Liu
- Sports Artificial Intelligence Institute Capital University of Physical Education and Sports Beijing People's Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics School of Aerospace Engineering, Beijing Institute of Technology Beijing People's Republic of China
- Sports Artificial Intelligence Institute Capital University of Physical Education and Sports Beijing People's Republic of China
| |
Collapse
|
2
|
Jiao D, Zheng A, Liu Y, Zhang X, Wang X, Wu J, She W, Lv K, Cao L, Jiang X. Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater 2021; 6:2011-2028. [PMID: 33426373 PMCID: PMC7782557 DOI: 10.1016/j.bioactmat.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 01/07/2023] Open
Abstract
Developmental engineering strategy needs the biomimetic composites that can integrate the progenitor cells, biomaterial matrices and bioactive signals to mimic the natural bone healing process for faster healing and reconstruction of segmental bone defects. We prepared the gelatin-reduced graphene oxide (GOG) and constructed the composites that mimicked the procallus by combining the GOG with the photo-crosslinked gelatin hydrogel. The biological effects of the GOG-reinforced composites could induce the bi-differentiation of bone marrow stromal cells (BMSCs) for rapid bone repair. The proper ratio of GOG in the composites regulated the composites' mechanical properties to a suitable range for the adhesion and proliferation of BMSCs. Besides, the GOG-mediated bidirectional differentiation of BMSCs, including osteogenesis and angiogenesis, could be activated through Erk1/2 and AKT pathway. The methyl vanillate (MV) delivered by GOG also contributed to the bioactive signals of the biomimetic procallus through priming the osteogenesis of BMSCs. During the repair of the calvarial defect in vivo, the initial hypoxic condition due to GOG in the composites gradually transformed into a well-vasculature robust situation with the bi-differentiation of BMSCs, which mimicked the process of bone healing resulting in the rapid bone regeneration. As an inorganic constituent, GOG reinforced the organic photo-crosslinked gelatin hydrogel to form a double-phase biomimetic procallus, which provided the porous extracellular matrix microenvironment and bioactive signals for the bi-directional differentiation of BMSCs. These show a promised application of the bio-reduced graphene oxide in biomedicine with a developmental engineering strategy.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangkai Zhang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao Wang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Jiannan Wu
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Wenjun She
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Kaige Lv
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
3
|
Mende W, Götzl R, Kubo Y, Pufe T, Ruhl T, Beier JP. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells 2021; 10:cells10050975. [PMID: 33919377 PMCID: PMC8143357 DOI: 10.3390/cells10050975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bone regeneration is a complex process that is influenced by tissue interactions, inflammatory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the administered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture healing. The aim of this review is a comprehensive overview of ASCs for bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Wolfgang Mende
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Rebekka Götzl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Tim Ruhl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Justus P Beier
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
4
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jean Yu Choi
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| | - Alistair C. Cowie
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| |
Collapse
|
5
|
Shafaei H, Kalarestaghi H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation. J Cell Physiol 2020; 235:8371-8386. [PMID: 32239731 DOI: 10.1002/jcp.29681] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.
Collapse
Affiliation(s)
- Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Kalarestaghi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Yue Y, Yang X, Wei X, Chen J, Fu N, Fu Y, Ba K, Li G, Yao Y, Liang C, Zhang J, Cai X, Wang M. Osteogenic differentiation of adipose-derived stem cells prompted by low-intensity pulsed ultrasound. Cell Prolif 2013; 46:320-7. [PMID: 23692090 DOI: 10.1111/cpr.12035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/06/2013] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Based on in vivo studies, low-intensity pulsed ultrasound (LIPUS) stimulation has been widely used in the clinic for advancing bone growth during healing of non-union alignment, fractures and other osseous defects. In this study, we have investigated osteogenic differentiation of adipose stem cells (ASCs) regulated by LIPUS, and also in a preliminarily manner, we have discussed diverse effects of different duty ratio parameters. MATERIALS AND METHODS Mouse adipose stem cells were isolated and osteogenically induced. Then they were treated with LIPUS for 10 min/day for 3 days, 5 days and 7 days, respectively. Finally, effects of LIPUS on osteogenic differentiation of the ASCs were analysed by real-time PCR, western blotting and immunofluorescence. RESULTS Our data indicated that LIPUS promoted mRNA levels of runt-related transcription factor 2, osteopontin and osterix in the presence of osteo-induction medium; moreover, protein levels of runt-related transcription factor 2 and osteopontin were upregulated. CONCLUSIONS We successfully demonstrated that LIPUS enhanced osteogenesis of ASCs, specially at the duty ratio of 20%.
Collapse
Affiliation(s)
- Y Yue
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|