1
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Das S, Kundu M, Hassan A, Parekh A, Jena BC, Mundre S, Banerjee I, Yetirajam R, Das CK, Pradhan AK, Das SK, Emdad L, Mitra P, Fisher PB, Mandal M. A novel computational predictive biological approach distinguishes Integrin β1 as a salient biomarker for breast cancer chemoresistance. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166702. [PMID: 37044238 DOI: 10.1016/j.bbadis.2023.166702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin β1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.
Collapse
Affiliation(s)
- Subhayan Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Moumita Kundu
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atif Hassan
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Aditya Parekh
- Anant National University, Ahmedabad, Gujarat, India
| | - Bikash Ch Jena
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swati Mundre
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranil Banerjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Pharmacy, Sister Nivedita University (Techno India Group), Kolkata, West Bengal, India
| | - Rajesh Yetirajam
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandan K Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pralay Mitra
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
3
|
Dadgar H, Jokar N, Nemati R, Larvie M, Assadi M. PET tracers in glioblastoma: Toward neurotheranostics as an individualized medicine approach. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1103262. [PMID: 39355049 PMCID: PMC11440984 DOI: 10.3389/fnume.2023.1103262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/23/2023] [Indexed: 10/03/2024]
Abstract
Over the past decade, theragnostic radiopharmaceuticals have been used in nuclear medicine for both diagnosis and treatment of various tumors. In this review, we carried out a literature search to investigate and explain the role of radiotracers in the theragnostic approach to glioblastoma multiform (GBM). We primarily focused on basic and rather common positron emotion tomography (PET) radiotracers in these tumors. Subsequently, we introduced and evaluated the preclinical and clinical results of theranostic-based biomarkers including integrin receptor family, prostate-specific membrane antigen (PSMA), fibroblast activated protein (FAP), somatostatin receptors (SRS), and chemokine receptor-4 (CXCR4) for patients with GBM to confer the benefit of personalized therapy. Moreover, promising research opportunities that could have a profound impact on the treatment of GBM over the next decade are also highlighted. Preliminary results showed the potential feasibility of the theragnostic approach using theses biomarkers in GBM patients.
Collapse
Affiliation(s)
- Habibullah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
Cho SK, Lee K, Woo JH, Choi JH. Macrophages Promote Ovarian Cancer-Mesothelial Cell Adhesion by Upregulation of ITGA2 and VEGFC in Mesothelial Cells. Cells 2023; 12:384. [PMID: 36766725 PMCID: PMC9913165 DOI: 10.3390/cells12030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Ovarian cancer is a metastatic disease that frequently exhibits extensive peritoneal dissemination. Recent studies have revealed that noncancerous cells inside the tumor microenvironment, such as macrophages and mesothelial cells, may play a role in ovarian cancer metastasis. In this study, we found that human ovarian cancer cells (A2780 and SKOV3) adhered more to human mesothelial Met5A cells stimulated by macrophages (M-Met5A) in comparison to unstimulated control Met5A cells. The mRNA sequencing revealed that 94 adhesion-related genes, including FMN1, ITGA2, COL13A1, VEGFC, and NRG1, were markedly upregulated in M-Met5A cells. Knockdown of ITGA2 and VEGFC in M-Met5A cells significantly inhibited the adhesion of ovarian cancer cells. Inhibition of the JNK and Akt signaling pathways suppressed ITGA2 and VEGFC expression in M-Met5A cells as well as ovarian cancer-mesothelial cell adhesion. Furthermore, increased production of CC chemokine ligand 2 (CCL2) and CCL5 by macrophages elevated ovarian cancer-mesothelial cell adhesion. These findings imply that macrophages may play a significant role in ovarian cancer-mesothelial cell adhesion by inducing the mesothelial expression of adhesion-related genes via the JNK and Akt pathways.
Collapse
Affiliation(s)
- Seung-Kye Cho
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kijun Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong-Hwa Woo
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
The First Snake Venom KTS/Disintegrins-Integrin Interactions Using Bioinformatics Approaches. Molecules 2022; 28:molecules28010325. [PMID: 36615520 PMCID: PMC9822126 DOI: 10.3390/molecules28010325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Snake venom contains a number of active molecules that have been shown to possess high anti-tumor activities; disintegrins are an excellent example among these. Their ability to interact and bind with integrins suggests that they could be very valuable molecules for the development of new cancer therapeutic approaches. However, in the absence of a clear Lysine-Threonine-Serine (KTS) Disintegrins Integrin interaction model, the exact compound features behind it are still unknown. In this study, we investigated the structural characteristics of three KTS-disintegrins and the interaction mechanisms with the α1β1 integrin receptor using in silico bioinformatics approaches. Normal mode analysis showed that the flexibility of the KTSR motif and the C-terminal region play a key role and influence the KTS-Disintegrin-integrin interaction. Protein-protein docking also suggested that the interaction involving the KTSR motif is highly dependent on the residue following K21, S23 and R24. These findings contribute to a better understanding of the KTS-Disintegrin-Integrin structural differences and their interactions with α1β1 receptors, which could improve the selection process of the best active molecules for antitumor therapies.
Collapse
|
6
|
Wang M, Shen S, Hou F, Yan Y. Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Front Cell Dev Biol 2022; 10:962481. [PMID: 36187469 PMCID: PMC9523240 DOI: 10.3389/fcell.2022.962481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary intracranial tumor and is also one of the most malignant central nervous system tumors. Its characteristics, such as high malignancy, abundant tumor vasculature, drug resistance, and recurrence-prone nature, cause great suffering to glioma patients. Furthermore, glioma stem cells are the primordial cells of the glioma and play a central role in the development of glioma. Integrins—heterodimers composed of noncovalently bound a and ß subunits—are highly expressed in glioma stem cells and play an essential role in the self-renewal, differentiation, high drug resistance, and chemo-radiotherapy resistance of glioma stem cells through cell adhesion and signaling. However, there are various types of integrins, and their mechanisms of function on glioma stem cells are complex. Therefore, this article reviews the feasibility of treating gliomas by targeting integrins on glioma stem cells.
Collapse
|
7
|
Raghubar AM, Pham DT, Tan X, Grice LF, Crawford J, Lam PY, Andersen SB, Yoon S, Teoh SM, Matigian NA, Stewart A, Francis L, Ng MSY, Healy HG, Combes AN, Kassianos AJ, Nguyen Q, Mallett AJ. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments. Front Med (Lausanne) 2022; 9:873923. [PMID: 35872784 PMCID: PMC9300864 DOI: 10.3389/fmed.2022.873923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Available transcriptomes of the mammalian kidney provide limited information on the spatial interplay between different functional nephron structures due to the required dissociation of tissue with traditional transcriptome-based methodologies. A deeper understanding of the complexity of functional nephron structures requires a non-dissociative transcriptomics approach, such as spatial transcriptomics sequencing (ST-seq). We hypothesize that the application of ST-seq in normal mammalian kidneys will give transcriptomic insights within and across species of physiology at the functional structure level and cellular communication at the cell level. Here, we applied ST-seq in six mice and four human kidneys that were histologically absent of any overt pathology. We defined the location of specific nephron structures in the captured ST-seq datasets using three lines of evidence: pathologist's annotation, marker gene expression, and integration with public single-cell and/or single-nucleus RNA-sequencing datasets. We compared the mouse and human cortical kidney regions. In the human ST-seq datasets, we further investigated the cellular communication within glomeruli and regions of proximal tubules-peritubular capillaries by screening for co-expression of ligand-receptor gene pairs. Gene expression signatures of distinct nephron structures and microvascular regions were spatially resolved within the mouse and human ST-seq datasets. We identified 7,370 differentially expressed genes (p adj < 0.05) distinguishing species, suggesting changes in energy production and metabolism in mouse cortical regions relative to human kidneys. Hundreds of potential ligand-receptor interactions were identified within glomeruli and regions of proximal tubules-peritubular capillaries, including known and novel interactions relevant to kidney physiology. Our application of ST-seq to normal human and murine kidneys confirms current knowledge and localization of transcripts within the kidney. Furthermore, the generated ST-seq datasets provide a valuable resource for the kidney community that can be used to inform future research into this complex organ.
Collapse
Affiliation(s)
- Arti M. Raghubar
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Duy T. Pham
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Xiao Tan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Laura F. Grice
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Pui Yeng Lam
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Stacey B. Andersen
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
- UQ Sequencing Facility, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Sohye Yoon
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
| | - Siok Min Teoh
- UQ Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas A. Matigian
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Stewart
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Leo Francis
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Monica S. Y. Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Nephrology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Helen G. Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Mallett
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, Queensland, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, QLD, Australia
| |
Collapse
|
8
|
Wen XQ, Qian XL, Sun HK, Zheng LL, Zhu WQ, Li TY, Hu JP. MicroRNAs: Multifaceted Regulators of Colorectal Cancer Metastasis and Clinical Applications. Onco Targets Ther 2020; 13:10851-10866. [PMID: 33149603 PMCID: PMC7602903 DOI: 10.2147/ott.s265580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third-commonest malignant cancer, and its metastasis is the major reason for cancer-related death. The process of metastasis is highly coordinated and involves a complex cascade of multiple steps. In recent years, miRNAs, as highly conserved, endogenous, noncoding, single-stranded RNA, has been confirmed to be involved in the development of various cancers. Considering that miRNA is also involved in a series of biological behaviors, regulating CRC occurrence and development, we review and summarize the role of miRNAs and related signaling pathways in several CRC-metastasis stages, including invasion and migration, mobility, metabolism, epithelial-mesenchymal transition, tumor-microenvironment communication, angiogenesis, anoikis, premetastatic-niche formation, and cancer stemness. In addition, we review the application of miRNAs as diagnostic CRC markers and in clinical treatment resistance. This review can contribute to understanding of the mechanism of miRNAs in CRC progression and provide a theoretical basis for clinical CRC treatment.
Collapse
Affiliation(s)
- Xiang-Qiong Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xian-Ling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Medical Imaging, Shanghai Medical College,Fudan University, Shanghai, 200032, People's Republic of China
| | - Huan-Kui Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lin-Lin Zheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Wei-Quan Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Tai-Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Jia-Ping Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
9
|
Therapy Resistance, Cancer Stem Cells and ECM in Cancer: The Matrix Reloaded. Cancers (Basel) 2020; 12:cancers12103067. [PMID: 33096662 PMCID: PMC7589733 DOI: 10.3390/cancers12103067] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) has remained an enigmatic component of the tumor microenvironment. It drives metastasis via its interaction with the integrin signaling pathway, contributes to tumor progression and confers therapy resistance by providing a physical barrier around the tumor. The complexity of the ECM lies in its heterogeneous composition and complex glycosylation that can provide a support matrix as well as trigger oncogenic signaling pathways by interacting with the tumor cells. In this review, we attempt to dissect the role of the ECM in enriching for the treatment refractory cancer stem cell population and how it may be involved in regulating their metabolic needs. Additionally, we discuss how the ECM is instrumental in remodeling the tumor immune microenvironment and the potential ways to target this component in order to develop a viable therapy.
Collapse
|
10
|
Wang H, Chen H, Jiang Z, Lin Y, Wang X, Xiang J, Peng J. Integrin subunit alpha V promotes growth, migration, and invasion of gastric cancer cells. Pathol Res Pract 2019; 215:152531. [PMID: 31320250 DOI: 10.1016/j.prp.2019.152531] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
Integrin subunit alpha V (ITGAV), a member of integrin family of extracellular matrix receptors, is involved in many types of cancer. In this study, the expression levels, clinical features and prognosis of ITGAV in gastric cancer (GC) patients were investigated, and the functional roles of ITGAV were also investigated. Cell Counting Kit-8 (CCK-8) assay was performed to examine the proliferation of GC cells. Transwell assays and wound-healing assays were conducted to explore the effect of ITGAV expression on GC cell migration and invasion. We found that ITGAV was overexpressed in both GC tissues and GC cells. ITGAV expression was positively correlated with lymph node metastasis and TNM stage of GC. High expression of ITGAV was associated with shorter overall survival (OS) and disease-free survival (DFS). Interestingly, the downregulation of ITGAV resulted in suppression of proliferation, migration, and invasion in GC cells. In conclusion, ITGAV is overexpressed in gastric cancer and is associated with poorer prognostic outcomes. ITGAV may serve as an important prognostic marker for GC staging and progression.
Collapse
Affiliation(s)
- Huashe Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Honglei Chen
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Department of Gastrointestinal Endoscopy, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Zhipeng Jiang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Yijia Lin
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xinyou Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jun Xiang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Junsheng Peng
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
11
|
Bartelt SM, Chervyachkova E, Ricken J, Wegner SV. Mimicking Adhesion in Minimal Synthetic Cells. ACTA ACUST UNITED AC 2019; 3:e1800333. [DOI: 10.1002/adbi.201800333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Solveig M. Bartelt
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Julia Ricken
- Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
| | - Seraphine V. Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
12
|
Lian XY, Ma JC, Zhou JD, Zhang TJ, Wu DH, Deng ZQ, Zhang ZH, Li XX, He PF, Yan Y, Lin J, Qian J. Hypermethylation of ITGBL1 is associated with poor prognosis in acute myeloid leukemia. J Cell Physiol 2018; 234:9438-9446. [PMID: 30317626 DOI: 10.1002/jcp.27629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
The current study was aimed to investigate integrin beta-like 1 (ITGBL1) methylation pattern and its clinical relevance in patients with acute myeloid leukemia (AML). Real-time methylation-specific polymerase chain reaction (PCR; RQ-MSP) and bisulfite sequencing PCR (BSP) were performed to detect the methylation of ITGBL1 promoter. Real-time quantitative PCR (RT-qPCR) was performed to analyze ITGBL1 transcript level. The results showed that ITGBL1 methylation level in 131 patients with AML was significantly higher than 29 controls (p < 0.001). The ITGBL1-hypermethylated group tended to have a higher bone marrow (BM) blasts ( p = 0.076). Meanwhile, ITGBL1-hypermethylated patients tended to have a lower complete remission (CR) rate ( p = 0.102). ITGBL1-hypermethylated patients had significantly shorter overall survival (OS) and leukemia-free survival (LFS) than ITGBL1 hypomethylated patients in whole AML cohort ( p = 0.009 and 0.043, respectively) and patients with nonacute promyelocytic leukemia (APL ; p = 0.023 and 0.039, respectively). Multivariate analysis confirmed that the ITGBL1 methylation served as an independent prognostic factor in both patients with whole-cohort AML ( p = 0.030) and patients with non-APL ( p = 0.020). Furthermore, the ITGBL1 methylation level was significantly decreased in follow-up AML patients who achieved complete remission after induction therapy ( P = 0.001). ITGBL1 methylation negatively correlated with ITGBL1 expression in patients with AML ( R = -0.328, p = 0.008). Moreover, demethylation of ITGBL1 could increase the ITGBL1 expression in the K562 leukemic cell line ( p < 0.05). In conclusion, the ITGBL1 hypermethylation is a potential biomarker for predicting prognosis and monitoring disease status in patients with AML.
Collapse
Affiliation(s)
- Xin-Yue Lian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - De-Hong Wu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China.,Department of Hematology, The Third People's Hospital of Kunshan City, Kunshan, Jiangsu, China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Zhi-Hui Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Pin-Fang He
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Yang Yan
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Haplotype CGC from XPD, hOGG1 and ITGA2 polymorphisms increases the risk of nasopharyngeal carcinoma in Malaysia. PLoS One 2017; 12:e0187200. [PMID: 29121049 PMCID: PMC5679532 DOI: 10.1371/journal.pone.0187200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND 8-oxoG, a common DNA lesion resulting from reactive oxygen species (ROS), has been shown to be associated with cancer initiation. hOGG1 DNA glycosylase is the primary enzyme responsible for excision of 8-oxoG through base excision repair (BER). Integrins are members of a family of cell surface receptors that mediate the cell-cell and extracellular matrix (ECM) interactions. Integrins are involved in almost every aspect of carcinogenesis, from cell differentiation, cell proliferation, metastasis to angiogenesis. Loss of ITGA2 expression was associated with enhanced tumor intravasation and metastasis of breast and colon cancer. XPD gene encodes DNA helicase enzyme that is involved in nucleotide excision repair (NER). It is shown in previous research that XPD homozygous wildtype Lys/Lys genotype was associated with higher odds of NPC. METHODS We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC) cases and 533 controls matched by age, gender and ethnicity to investigate the effect of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Linkage disequilibrium and haplotype analysis were conducted to explore the association of allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR) was used for DNA genotyping. RESULTS No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06-2.43). Subjects with history of smoking (OR = 1.81, 95% CI = 1.26-2.60), and salted fish consumption before age of 10 (OR = 1.77, 95% CI = 1.30-2.42) were observed to have increased odds of NPC. The odds of developing NPC of CGC haplotype was significantly higher compared to reference AGC haplotype (OR = 2.20, 95% CI = 1.06-4.58). CONCLUSION The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC.
Collapse
|
14
|
Huang L, Cai JL, Huang PZ, Kang L, Huang MJ, Wang L, Wang JP. miR19b-3p promotes the growth and metastasis of colorectal cancer via directly targeting ITGB8. Am J Cancer Res 2017; 7:1996-2008. [PMID: 29119049 PMCID: PMC5665847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023] Open
Abstract
MicroRNAs (miRNAs) are widely up-regulated or down-regulated in a variety of tumors, including lung cancer, liver cancer, and colorectal cancer (CRC). Furthermore, miRNAs can function as tumor suppressors or proto-oncogenes by controlling the growth and metastasis of cancer cells. In the present study, we found a significant increase in miR19b-3p levels in CRC compared to tumor tissue and revealed the role of miR19b-3p in CRC growth and metastasis. The exogenous overexpression of miR19b-3p induced the proliferation, migration, and invasion of CRC cells in vitro. In addition, the nude mouse xenograft model showed that miR19b-3p overexpression promoted CRC growth and lung metastasis in vivo, whereas silencing miR19b-3p showed opposite results. Mechanistic studies have shown that the integrin beta-8 (ITGB8) transcript is one of the direct targets of miR19b-3p, and the expression of ITGB8 in CRC specimens was positively correlated with miR19b-3p. Finally, ectopic expression of ITGB8 rescued cell proliferation and invasion, which was inhibited by down-regulation of miR19b-3p. In addition, knockdown of ITGB8 neutralized the effects of miR19b-3p overexpression on cell growth and metastasis in CRC cells. Together, these results suggest that the miR19b-3p/ITGB8 axis plays an important role in the growth and metastasis of CRC.
Collapse
Affiliation(s)
- Liang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Jin Lin Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Pin Zhu Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Liang Kang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Mei Jin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Lei Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Jian Ping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|