1
|
Tahira AC, Gomes MPB, Freire MH, Muxfeldt M, Prosdocimi F, Passos YM, Sena Amaral M, Felix Valadão LP, Rangel LP, Silva JL, Verjovski-Almeida S, Cordeiro Y. RNA-seq analyses reveal the relevance of RNAs involved in ribosomal complex to induce mammalian prion protein aggregation and phase separation in vitro. RNA Biol 2025; 22:1-16. [PMID: 40438940 PMCID: PMC12123958 DOI: 10.1080/15476286.2025.2508107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/2025] [Accepted: 05/01/2025] [Indexed: 06/02/2025] Open
Abstract
Conformational conversion of cellular prion protein (PrPC) into infectious PrP (PrPSc) is one of the most intriguing processes in modern Biology. It is well accepted that this transition is catalysed by one or more cofactors that lower the energy barrier between the different PrP forms. Among potential candidates, RNA molecules are strong contenders. Our group has pursued nucleic acids, both DNA and RNA, capable of inducing PrP misfolding, aggregation, and, more recently, phase separation, a process proposed to precede aggregation in degenerative disorders. We found that the interaction between recombinant PrP (rPrP) and total RNA extracted from neuroblastoma cells (N2aRNA) results in significant structural alterations. Here, we use rPrP:N2aRNA as a model to search for RNAs capable of inducing full-length murine rPrP phase separation and/or aggregation. N2aRNA was incubated with rPrP and after that, RNA-seq analysis was conducted with RNAs isolated from the insoluble material using two different protocols. We analysed thousands of RNA-seq reads, most of which represented ribosomal RNA molecules. The set of recovered molecules is heterogeneous; nevertheless, three low-complexity consensus motifs within the sequences of RNAs involved in ribosomal complex were identified as significantly enriched in the RNAs bound to rPrP, suggesting that a population of RNAs is responsible for inducing PrP phase transitions. We hypothesize that RNA transcripts enriched in a set of low complexity motif sequences with predicted structural similarities can be involved in PrPC binding. This interaction would lead to phase separation and, ultimately, result in aggregation into scrapie-like species, in a stoichiometry-dependent manner.
Collapse
Affiliation(s)
- Ana C. Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brasil
| | - Mariana P. B. Gomes
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brasil
| | - Maria Heloisa Freire
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelly Muxfeldt
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Francisco Prosdocimi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Yulli M. Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | - Luciana P. Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
2
|
Ghassemi Z, Leach JB. Impact of Confinement within a Hydrogel Mesh on Protein Thermodynamic Stability and Aggregation Kinetics. Mol Pharm 2024; 21:1137-1148. [PMID: 38277273 DOI: 10.1021/acs.molpharmaceut.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Though protein stability and aggregation have been well characterized in dilute solutions, the influence of a confining environment that exists (e.g., in intercellular and tissue spaces and therapeutic formulations) on the protein structure is largely unknown. Herein, the effects of confinement on stability and aggregation were explored for proteins of different sizes, stability, and hydrophobicity when encapsulated in hydrophilic poly(ethylene glycol) hydrogels. Denaturation curves show linear correlations between confinement size (mesh size) and thermodynamic stability, i.e., unfolding free energy and surface area accessible for solvation (represented by m-value). Two clusters of protein types are identifiable from these correlations; the clusters are defined by differences in protein stability, surface area, and aggregation propensity. Proteins with higher stability, larger surface area, and lower aggregation propensity (e.g., lysozyme and myoglobin) are less affected by the confinement imposed by mesh size than proteins with lower stability, smaller surface area, and higher aggregation propensity (e.g., growth hormone and aldehyde dehydrogenase). According to aggregation kinetics measured by thioflavin T fluorescence, confinement in smaller mesh sizes resulted in slower aggregation rates than that in larger mesh sizes. Compared to that in buffer solution, the confinement of a hydrophobic protein (e.g., human insulin) in the hydrogels accelerates protein aggregation. Conversely, the confinement of a hydrophilic protein (e.g., human amylin) in the hydrogels decelerates or prevents aggregation, with the rates of aggregation inversely proportional to mesh size. These findings provide new insights into protein conformational stability in confined microenvironments relevant to various cellular, tissue, and therapeutics scenarios.
Collapse
Affiliation(s)
- Zahra Ghassemi
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Jennie B Leach
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
3
|
Zhang J, Ma Z, Yang Y, Guo L, Du L, the Alzheimer’s Disease Neuroimaging Initiative. Modeling genotype-protein interaction and correlation for Alzheimer's disease: a multi-omics imaging genetics study. Brief Bioinform 2024; 25:bbae038. [PMID: 38348747 PMCID: PMC10939371 DOI: 10.1093/bib/bbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
Integrating and analyzing multiple omics data sets, including genomics, proteomics and radiomics, can significantly advance researchers' comprehensive understanding of Alzheimer's disease (AD). However, current methodologies primarily focus on the main effects of genetic variation and protein, overlooking non-additive effects such as genotype-protein interaction (GPI) and correlation patterns in brain imaging genetics studies. Importantly, these non-additive effects could contribute to intermediate imaging phenotypes, finally leading to disease occurrence. In general, the interaction between genetic variations and proteins, and their correlations are two distinct biological effects, and thus disentangling the two effects for heritable imaging phenotypes is of great interest and need. Unfortunately, this issue has been largely unexploited. In this paper, to fill this gap, we propose $\textbf{M}$ulti-$\textbf{T}$ask $\textbf{G}$enotype-$\textbf{P}$rotein $\textbf{I}$nteraction and $\textbf{C}$orrelation disentangling method ($\textbf{MT-GPIC}$) to identify GPI and extract correlation patterns between them. To ensure stability and interpretability, we use novel and off-the-shelf penalties to identify meaningful genetic risk factors, as well as exploit the interconnectedness of different brain regions. Additionally, since computing GPI poses a high computational burden, we develop a fast optimization strategy for solving MT-GPIC, which is guaranteed to converge. Experimental results on the Alzheimer's Disease Neuroimaging Initiative data set show that MT-GPIC achieves higher correlation coefficients and classification accuracy than state-of-the-art methods. Moreover, our approach could effectively identify interpretable phenotype-related GPI and correlation patterns in high-dimensional omics data sets. These findings not only enhance the diagnostic accuracy but also contribute valuable insights into the underlying pathogenic mechanisms of AD.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Zikang Ma
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Yan Yang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Lei Guo
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Lei Du
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | | |
Collapse
|
4
|
Cordeiro Y, Freire MHO, Wiecikowski AF, do Amaral MJ. (Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the prion protein and α-synuclein phase separation. Biophys Rev 2023; 15:577-589. [PMID: 37681103 PMCID: PMC10480379 DOI: 10.1007/s12551-023-01067-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 09/09/2023] Open
Abstract
Prion diseases are prototype of infectious diseases transmitted by a protein, the prion protein (PrP), and are still not understandable at the molecular level. Heterogenous species of aggregated PrP can be generated from its monomer. α-synuclein (αSyn), related to Parkinson's disease, has also shown a prion-like pathogenic character, and likewise PrP interacts with nucleic acids (NAs), which in turn modulate their aggregation. Recently, our group and others have characterized that NAs and/or RNA-binding proteins (RBPs) modulate recombinant PrP and/or αSyn condensates formation, and uncontrolled condensation might precede pathological aggregation. Tackling abnormal phase separation of neurodegenerative disease-related proteins has been proposed as a promising therapeutic target. Therefore, understanding the mechanism by which polyanions, like NAs, modulate phase transitions intracellularly, is key to assess their role on toxicity promotion and neuronal death. Herein we discuss data on the nucleic acids binding properties and phase separation ability of PrP and αSyn with a special focus on their modulation by NAs and RBPs. Furthermore, we provide insights into condensation of PrP and/or αSyn in the light of non-trivial subcellular locations such as the nuclear and cytosolic environments.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Maria Heloisa O. Freire
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adalgisa Felippe Wiecikowski
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
5
|
Macáková K, Illésová J, Mlynáriková V, Lesayová A, Konečná B, Vlková B, Celec P, Šteňová E. The dynamics of extracellular DNA associates with treatment response in patients with rheumatoid arthritis. Sci Rep 2022; 12:21099. [PMID: 36473902 PMCID: PMC9726858 DOI: 10.1038/s41598-022-23954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) as a chronic autoimmune inflammatory disease increases extracellular DNA (ecDNA). Our previous study has shown that anti-inflammatory treatment reduces ecDNA, but it is unclear whether there is an association with treatment response. The aim of this study was to analyze the changes of ecDNA induced by biological disease-modifying antirheumatic drugs (bDMARDs) in RA patients with an emphasis on the subcellular origin of ecDNA. Plasma samples from 40 RA patients were collected in three different time-points: before treatment with bDMARDs as well as 3 and 12 months following treatment initiation. Total, nuclear and mitochondrial ecDNA was quantified using fluorometry and real-time PCR. Disease activity score (DAS28) and C-reactive protein (CRP) were used to monitor the clinical status and the response to treatment. Treatment with bDMARDs elicited an overall improvement of the clinical status: DAS28 and CRP showed a significant decrease by 54% and 43%, respectively, after 3 months of treatment. A significant decrease of total ecDNA by 60% and nuclear ecDNA by 58% was detected only in good responders after 3 months of bDMARDs treatment. No significant changes of plasma ecDNA concentration were observed in moderate and non-responders. Deoxyribonuclease activity was not affected by the treatment. None of the analyzed biomarkers differed between the groups at baseline. Plasma ecDNA especially of nuclear origin could potentially be useful to monitor the treatment response in RA. Further studies should shed light on disease-treatment interplay implicated in ecDNA origin potentially linked to neutrophil extracellular traps.
Collapse
Affiliation(s)
- Kristína Macáková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovakia
| | - Júlia Illésová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovakia
| | | | - Alexandra Lesayová
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovakia
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovakia.
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovakia.
- Institute of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia.
| | - Emöke Šteňová
- 1st Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Bratislava, 82101, Slovakia
| |
Collapse
|
6
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
7
|
Koss DJ, Erskine D, Porter A, Palmoski P, Menon H, Todd OGJ, Leite M, Attems J, Outeiro TF. Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathol Commun 2022; 10:98. [PMID: 35794636 PMCID: PMC9258129 DOI: 10.1186/s40478-022-01403-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is pathologically defined by the cytoplasmic accumulation of alpha-synuclein (aSyn) within neurons in the brain. Predominately pre-synaptic, aSyn has been reported in various subcellular compartments in experimental models. Indeed, nuclear alpha-synuclein (aSynNuc) is evident in many models, the dysregulation of which is associated with altered DNA integrity, transcription and nuclear homeostasis. However, the presence of aSynNuc in human brain cells remains controversial, yet the determination of human brain aSynNuc and its pathological modification is essential for understanding synucleinopathies. Here, using a multi-disciplinary approach employing immunohistochemistry, immunoblot, and mass-spectrometry (MS), we confirm aSynNuc in post-mortem brain tissue obtained from DLB and control cases. Highly dependent on antigen retrieval methods, in optimal conditions, intra-nuclear pan and phospho-S129 positive aSyn puncta were observed in cortical neurons and non-neuronal cells in fixed brain sections and in isolated nuclear preparations in all cases examined. Furthermore, an increase in nuclear phospho-S129 positive aSyn immunoreactivity was apparent in DLB cases compared to controls, in both neuronal and non-neuronal cell types. Our initial histological investigations identified that aSynNuc is affected by epitope unmasking methods but present under optimal conditions, and this presence was confirmed by isolation of nuclei and a combined approach of immunoblotting and mass spectrometry, where aSynNuc was approximately tenfold less abundant in the nucleus than cytoplasm. Notably, direct comparison of DLB cases to aged controls identified increased pS129 and higher molecular weight species in the nuclei of DLB cases, suggesting putative pathogenic modifications to aSynNuc in DLB. In summary, using multiple approaches we provide several lines of evidence supporting the presence of aSynNuc in autoptic human brain tissue and, notably, that it is subject to putative pathogenic modifications in DLB that may contribute to the disease phenotype.
Collapse
|
8
|
Zacco E, Kantelberg O, Milanetti E, Armaos A, Panei FP, Gregory J, Jeacock K, Clarke DJ, Chandran S, Ruocco G, Gustincich S, Horrocks MH, Pastore A, Tartaglia GG. Probing TDP-43 condensation using an in silico designed aptamer. Nat Commun 2022; 13:3306. [PMID: 35739092 PMCID: PMC9226187 DOI: 10.1038/s41467-022-30944-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Aptamers are artificial oligonucleotides binding to specific molecular targets. They have a promising role in therapeutics and diagnostics but are often difficult to design. Here, we exploited the catRAPID algorithm to generate aptamers targeting TAR DNA-binding protein 43 (TDP-43), whose aggregation is associated with Amyotrophic Lateral Sclerosis. On the pathway to forming insoluble inclusions, TDP-43 adopts a heterogeneous population of assemblies, many smaller than the diffraction-limit of light. We demonstrated that our aptamers bind TDP-43 and used the tightest interactor, Apt-1, as a probe to visualize TDP-43 condensates with super-resolution microscopy. At a resolution of 10 nanometers, we tracked TDP-43 oligomers undetectable by standard approaches. In cells, Apt-1 interacts with both diffuse and condensed forms of TDP-43, indicating that Apt-1 can be exploited to follow TDP-43 phase transition. The de novo generation of aptamers and their use for microscopy opens a new page to study protein condensation.
Collapse
Affiliation(s)
- Elsa Zacco
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Owen Kantelberg
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Alexandros Armaos
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Francesco Paolo Panei
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Jenna Gregory
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little F, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Kiani Jeacock
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little F, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Stefano Gustincich
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152, Genova, Italy.
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
- Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome, 00185, Italy.
| |
Collapse
|
9
|
Tan CJ, Basak R, Yadav I, van Kan JA, Arluison V, van der Maarel JRC. Mobility of Bacterial Protein Hfq on dsDNA: Role of C-Terminus-Mediated Transient Binding. J Phys Chem B 2022; 126:1477-1482. [PMID: 35166115 DOI: 10.1021/acs.jpcb.1c10234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mobility of protein is fundamental in the machinery of life. Here, we have investigated the effect of DNA binding in conjunction with DNA segmental fluctuation (internal motion) of the bacterial Hfq master regulator devoid of its amyloid C-terminus domain. Hfq is one of the most abundant nucleoid associated proteins that shape the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy has been used to track a C-terminus domain lacking mutant form of Hfq on double-stranded DNA, which is stretched by confinement to a rectangular nanofluidic channel. The mobility of the mutant is strongly accelerated with respect to the wild-type variant. Furthermore, it shows a reverse dependence on the internal motion of DNA, in that slower motion results in slower protein diffusion. The results demonstrate the subtle role of DNA internal motion in controlling the mobility of a nucleoid associated protein, and, in particular, the importance of transient binding and moving DNA strands out of the way.
Collapse
Affiliation(s)
- Chuan Jie Tan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Rajib Basak
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Véronique Arluison
- Université de Paris, UFR SDV, Paris 75006, France.,Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette 91191, France
| | | |
Collapse
|
10
|
Ferdosh S, Banerjee S, Singh J, Barat C. Amyloid protein-induced sequestration of the eukaryotic ribosome: effect of stoichiometry and polyphenolic inhibitors. FEBS Lett 2022; 596:1190-1202. [PMID: 35114013 DOI: 10.1002/1873-3468.14308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is characterized by the appearance of neurofibrillary tangles comprising of the Tau protein and aggregation of amyloid-β peptides (Aβ 1-40 and Aβ 1-42). A concomitant loss of the ribosomal population is also observed in AD-affected neurons. Our studies demonstrate that, similarly to Tau protein aggregation, in vitro aggregation of Aβ peptides in the vicinity of the yeast 80S ribosome can induce co-aggregation of ribosomal components. The RNA-stimulated aggregation of Aβ peptides and the Tau-K18 variant is dependent on the RNA:protein stoichiometric ratio. A similar effect of stoichiometry is also observed on the ribosome-protein co-aggregation process. Polyphenolic inhibitors of amyloid aggregation, such as rosmarinic acid and myricetin, inhibit RNA-stimulated Aβ and Tau-K18 aggregation and can mitigate the co-aggregation of ribosomal components.
Collapse
Affiliation(s)
- Sehnaz Ferdosh
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Senjuti Banerjee
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Jayshree Singh
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Chandana Barat
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| |
Collapse
|
11
|
Mukherjee SK, Knop JM, Winter RHA. Modulation of the Conformational Space of SARS-CoV-2 RNA Quadruplex RG-1 by Cellular Components and the Amyloidogenic Peptides α-Synuclein and hIAPP. Chemistry 2021; 28:e202104182. [PMID: 34882862 PMCID: PMC9015630 DOI: 10.1002/chem.202104182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 11/10/2022]
Abstract
Given the emergence of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), which particularly threatens older people with comorbidities such as diabetes mellitus and dementia, understanding the relationship between Covid-19 and other diseases is an important factor for treatment. Possible targets for medical intervention include G-quadruplexes (G4Qs) and their protein interaction partners. We investigated the stability and conformational space of the RG-1 RNA-G-quadruplex of the SARS-CoV-2 N-gene in the presence of salts, cosolutes, crowders and intrinsically disordered peptides, focusing on α-Synuclein and the human islet amyloid polypeptide, which are involved in Parkinson's disease (PD) and type-II diabetes mellitus (T2DM), respectively. We found that the conformational dynamics of the RG-1 G4Q is strongly affected by the various solution conditions. Further, the amyloidogenic peptides were found to strongly modulate the conformational equilibrium of the RG-1. Considerable changes are observed with respect to their interaction with human telomeric G4Qs, which adopt different topologies. These results may therefore shed more light on the relationship between PD as well as T2DM and the SARS-CoV-2 disease and their molecular underpinnings. Since dysregulation of G4Q formation by rationally designed targeting compounds affects the control of cellular processes, this study should contribute to the development of specific ligands for intervention.
Collapse
Affiliation(s)
- Sanjib K Mukherjee
- TU Dortmund University: Technische Universitat Dortmund, Chemistry and Chemical Biology, GERMANY
| | - Jim-Marcel Knop
- TU Dortmund University: Technische Universitat Dortmund, Chemistry and Chemical Biology, GERMANY
| | - Roland Hermann Alfons Winter
- TU Dortmund University, Chemistry and Chemical Biology, Otto-Hahn Str. 4a, Physical Chemistry I, 44227, Dortmund, GERMANY
| |
Collapse
|
12
|
Harini K, Srivastava A, Kulandaisamy A, Gromiha MM. ProNAB: database for binding affinities of protein-nucleic acid complexes and their mutants. Nucleic Acids Res 2021; 50:D1528-D1534. [PMID: 34606614 PMCID: PMC8728258 DOI: 10.1093/nar/gkab848] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Protein–nucleic acid interactions are involved in various biological processes such as gene expression, replication, transcription, translation and packaging. The binding affinities of protein–DNA and protein–RNA complexes are important for elucidating the mechanism of protein–nucleic acid recognition. Although experimental data on binding affinity are reported abundantly in the literature, no well-curated database is currently available for protein–nucleic acid binding affinity. We have developed a database, ProNAB, which contains more than 20 000 experimental data for the binding affinities of protein–DNA and protein–RNA complexes. Each entry provides comprehensive information on sequence and structural features of a protein, nucleic acid and its complex, experimental conditions, thermodynamic parameters such as dissociation constant (Kd), binding free energy (ΔG) and change in binding free energy upon mutation (ΔΔG), and literature information. ProNAB is cross-linked with GenBank, UniProt, PDB, ProThermDB, PROSITE, DisProt and Pubmed. It provides a user-friendly web interface with options for search, display, sorting, visualization, download and upload the data. ProNAB is freely available at https://web.iitm.ac.in/bioinfo2/pronab/ and it has potential applications such as understanding the factors influencing the affinity, development of prediction tools, binding affinity change upon mutation and design complexes with the desired affinity.
Collapse
Affiliation(s)
- Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ambuj Srivastava
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arulsamy Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Turbant F, Wu P, Wien F, Arluison V. The Amyloid Region of Hfq Riboregulator Promotes DsrA: rpoS RNAs Annealing. BIOLOGY 2021; 10:biology10090900. [PMID: 34571778 PMCID: PMC8468756 DOI: 10.3390/biology10090900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Hfq is a bacterial RNA chaperone which promotes the pairing of small noncoding RNAs to target mRNAs, allowing post-transcriptional regulation. This RNA annealing activity has been attributed for years to the N-terminal region of the protein that forms a toroidal structure with a typical Sm-fold. Nevertheless, many Hfqs, including that of Escherichia coli, have a C-terminal region with unclear functions. Here we use a biophysical approach, Synchrotron Radiation Circular Dichroism (SRCD), to probe the interaction of the E. coli Hfq C-terminal amyloid region with RNA and its effect on RNA annealing. This C-terminal region of Hfq, which has been described to be dispensable for sRNA:mRNA annealing, has an unexpected and significant effect on this activity. The functional consequences of this novel property of the amyloid region of Hfq in relation to physiological stress are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Pengzhi Wu
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- UFR Sciences du Vivant, Université de Paris, 75006 Paris, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| |
Collapse
|
14
|
Shmookler Reis RJ, Atluri R, Balasubramaniam M, Johnson J, Ganne A, Ayyadevara S. "Protein aggregates" contain RNA and DNA, entrapped by misfolded proteins but largely rescued by slowing translational elongation. Aging Cell 2021; 20:e13326. [PMID: 33788386 PMCID: PMC8135009 DOI: 10.1111/acel.13326] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
All neurodegenerative diseases feature aggregates, which usually contain disease-specific diagnostic proteins; non-protein constituents, however, have rarely been explored. Aggregates from SY5Y-APPSw neuroblastoma, a cell model of familial Alzheimer's disease, were crosslinked and sequences of linked peptides identified. We constructed a normalized "contactome" comprising 11 subnetworks, centered on 24 high-connectivity hubs. Remarkably, all 24 are nucleic acid-binding proteins. This led us to isolate and sequence RNA and DNA from Alzheimer's and control aggregates. RNA fragments were mapped to the human genome by RNA-seq and DNA by ChIP-seq. Nearly all aggregate RNA sequences mapped to specific genes, whereas DNA fragments were predominantly intergenic. These nucleic acid mappings are all significantly nonrandom, making an artifactual origin extremely unlikely. RNA (mostly cytoplasmic) exceeded DNA (chiefly nuclear) by twofold to fivefold. RNA fragments recovered from AD tissue were ~1.5-to 2.5-fold more abundant than those recovered from control tissue, similar to the increase in protein. Aggregate abundances of specific RNA sequences were strikingly differential between cultured SY5Y-APPSw glioblastoma cells expressing APOE3 vs. APOE4, consistent with APOE4 competition for E-box/CLEAR motifs. We identified many G-quadruplex and viral sequences within RNA and DNA of aggregates, suggesting that sequestration of viral genomes may have driven the evolution of disordered nucleic acid-binding proteins. After RNA-interference knockdown of the translational-procession factor EEF2 to suppress translation in SY5Y-APPSw cells, the RNA content of aggregates declined by >90%, while reducing protein content by only 30% and altering DNA content by ≤10%. This implies that cotranslational misfolding of nascent proteins may ensnare polysomes into aggregates, accounting for most of their RNA content.
Collapse
Affiliation(s)
- Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare System Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Ramani Atluri
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | | | - Jay Johnson
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Akshatha Ganne
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
15
|
M Passos Y, J do Amaral M, C Ferreira N, Macedo B, Chaves JAP, E de Oliveira V, P B Gomes M, L Silva J, Cordeiro Y. The interplay between a GC-rich oligonucleotide and copper ions on prion protein conformational and phase transitions. Int J Biol Macromol 2021; 173:34-43. [PMID: 33476618 DOI: 10.1016/j.ijbiomac.2021.01.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.
Collapse
Affiliation(s)
- Yulli M Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Mariana J do Amaral
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Natalia C Ferreira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil; Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, MT, USA
| | - Bruno Macedo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Juliana A P Chaves
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Vanessa E de Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rio das Ostras 28890-000, RJ, Brazil
| | - Mariana P B Gomes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil.
| |
Collapse
|
16
|
Turbant F, Hamoui OE, Partouche D, Sandt C, Busi F, Wien F, Arluison V. Identification and characterization of the Hfq bacterial amyloid region DNA interactions. BBA ADVANCES 2021; 1:100029. [PMID: 37082015 PMCID: PMC10074921 DOI: 10.1016/j.bbadva.2021.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid amyloid proteins interactions have been observed in the past few years. These interactions often promote protein aggregation. Nevertheless, molecular basis and physiological consequences of these interactions are still poorly understood. Additionally, it is unknown whether the nucleic acid promotes the formation of self-assembly due to direct interactions or indirectly via sequences surrounding the amyloid region. Here we focus our attention on a bacterial amyloid, Hfq. This protein is a pleiotropic bacterial regulator that mediates many aspects of nucleic acids metabolism. The protein notably mediates mRNA stability and translation efficiency by using stress-related small non coding regulatory RNA. In addition, Hfq, thanks to its amyloid C-terminal region, binds and compacts DNA. A combination of experimental methodologies, including synchrotron radiation circular dichroism (SRCD), gel shift assay and infrared (FTIR) spectroscopy have been used to probe the interaction of Hfq C-terminal region with DNA. We clearly identify important amino acids in this region involved in DNA binding and polymerization properties. This allows to understand better how this bacterial amyloid interacts with DNA. Possible functional consequence to answer to stresses are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Omar El Hamoui
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florent Busi
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
- Corresponding author.
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Corresponding author.
| |
Collapse
|
17
|
Kwon J, Choi JS, Lee J, Na J, Sung J, Lee HJ, Lee HS, Lim YB, Choi HJ. Disaggregation of Amyloid-β Plaques by a Local Electric Field Generated by a Vertical Nanowire Electrode Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55596-55604. [PMID: 33269924 DOI: 10.1021/acsami.0c16000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aggregation and accumulation of amyloid-β (Aβ) peptides is a characteristic pathology for Alzheimer's disease (AD). Although noninvasive therapies involving stimulation by electric field (EF) have been reported, the efficiency of Aβ disaggregation needs to be further improved for this strategy to be used in clinical settings. In this study, we show that an electrode based on a vertical nanowire electrode array (VNEA) is far more superior to a typical flat-type electrode in disaggregating Aβ plaques. The enhanced disaggregation efficiency of VNEA is due to the formation of high-strength local EF between the nanowires, as verified by in silico and empirical evidence. Compared with those of the flat electrode, the simulation data revealed that 19.8-fold and 8.8-fold higher EFs are generated above and between the nanowires, respectively. Moreover, empirical cyclic voltammetry data demonstrated that VNEA had a 2.7-fold higher charge capacity than the flat electrode; this is associated with the higher surface area of VNEA. The conformational transition of Aβ peptides between the β-sheet and α-helix could be sensitively monitored in real time by the newly designed in situ circular dichroism instrument. This highly efficient EF-configuration of VNEA will lower the stimulation power for disaggregating the Aβ plaques, compared to that of other existing field-mediated modulation systems. Considering the complementary metal-oxide-semiconductor-compatibility and biocompatible strength of the EF for perturbing the Aβ aggregation, our study could pave the way for the potential use of electric stimulation devices for in vivo therapeutic application as well as scientific studies for AD.
Collapse
Affiliation(s)
- Juyoung Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun Shik Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaejun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jukwan Na
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaesuk Sung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Soo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
do Amaral MJ, Araujo TS, Díaz NC, Accornero F, Polycarpo CR, Cordeiro Y, Cabral KMS, Almeida MS. Phase Separation and Disorder-to-Order Transition of Human Brain Expressed X-Linked 3 (hBEX3) in the Presence of Small Fragments of tRNA. J Mol Biol 2020; 432:2319-2348. [PMID: 32142787 PMCID: PMC11949257 DOI: 10.1016/j.jmb.2020.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
Brain Expressed X-linked (BEX) protein family consists of five members in humans and is highly expressed during neuronal development. They are known to participate in cell cycle and in signaling pathways involved in neurodegeneration and cancer. BEX3 possess a conserved leucine-rich nuclear export signal and experimental data confirmed BEX3 nucleocytoplasmic shuttling. Previous data revealed that mouse BEX3 auto-associates in an oligomer rich in intrinsic disorder. In this work, we show that human BEX3 (hBEX3) has well-defined three-dimensional structure in the presence of small fragments of tRNA (tRFs). Conversely, the nucleic acids-free purified hBEX3 presented disordered structure. Small-angle X-ray scattering data revealed that in the presence of tRFs, hBEX3 adopts compact globular fold, which is very distinct from the elongated high-order oligomer formed by the pure protein. Furthermore, microscopy showed that hBEX3 undergoes condensation in micron-sized protein-rich droplets in vitro. In the presence of tRFs, biomolecular condensates were smaller and in higher number, showing acridine orange green fluorescence emission, which corroborated with the presence of base-paired nucleic acids. Additionally, we found that over time hBEX3 transits from liquid condensates to aggregates that are reversible upon temperature increment and dissolved by 1,6-hexanediol. hBEX3 assemblies display different morphology in the presence of the tRFs that seems to protect from amyloid formation. Collectively, our findings support a role for tRFs in hBEX3 disorder-to-order transition and modulation of phase transitions. Moreover, hBEX3 aggregation-prone features and the specificity in interaction with tRNA fragments advocate paramount importance toward understanding BEX family involvement in neurodevelopment and cell death.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Talita S Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Nuria C Díaz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, 43210 OH, USA
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Katia M S Cabral
- Plataforma Avançada de Biomoléculas, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; Faculdade de Medicina de Petrópolis/Faculdade Arthur Sá Earp Neto, 25680-120 Petrópolis, Rio de Janeiro, Brazil
| | - Marcius S Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; Plataforma Avançada de Biomoléculas, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Milošević J, Petrić J, Jovčić B, Janković B, Polović N. Exploring the potential of infrared spectroscopy in qualitative and quantitative monitoring of ovalbumin amyloid fibrillation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117882. [PMID: 31818644 DOI: 10.1016/j.saa.2019.117882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Amyloid fibrils are highly ordered self-assembled (poly)peptide aggregates with cross-β structural pattern. Ovalbumin was used as a model for exploring the potential of infrared spectroscopy in detecting structural transitions and quantitative monitoring of amyloid fibrillation. Low pH (pH 2) and high temperature (90 °C) over the course of 24 h were conditions applied for amyloid formation. Fibrillation of ovalbumin was monitored by ThT and ANS fluorescence, and SDS PAGE. A significant increase in ThT fluorescence with a plateau reached after 4 h of incubation, without the lag phase, was detected. Structural transitions leading to amyloid fibrillation were analysed using all three Amide regions in ATR-FTIR spectra. Significant changes were detected in Amide I and Amide III region (decrease of α-helix and increase of β-sheet peaks). To establish a fast, precise and simple method for quantitative monitoring of amyloid fibrillation, the Amide I/Amide II ratios of aggregation specific β-sheets (1625 and 1695 cm-1, respectively) with 1540 cm-1 as internal standard were used, resulting in good correlation (R2 = 0.93 and 0.95) with the data observed by monitoring ThT fluorescence. On the other hand, assessing aggregation specific β-sheet contents by self-deconvolution showed lower correlation with ThT fluorescence (R2 = 0.75 and 0.64). Here we examined structural transitions during ovalbumin fibrillation in a qualitative and quantitative manner by exploiting the full potential of Amide regions simultaneously. Secondary structure distribution was monitored using second derivative spectra in Amide I region. A novel, simple mathematical calculation for quantitative monitoring of fibrils formation was presented employing that the increase in low and high frequency aggregation specific β-sheet in Amide I region compared to the internal standard in Amide II region is suitable for fibril formation monitoring.
Collapse
Affiliation(s)
- Jelica Milošević
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Jovan Petrić
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Branko Jovčić
- University of Belgrade - Faculty of Biology, Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brankica Janković
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Natalija Polović
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia.
| |
Collapse
|
20
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Abstract
A hallmark feature of Alzheimer’s disease (AD) and other tauopathies is the misfolding, aggregation and cerebral accumulation of tau deposits. Compelling evidence indicates that misfolded tau aggregates are neurotoxic, producing synaptic loss and neuronal damage. Misfolded tau aggregates are able to spread the pathology from cell-to-cell by a prion like seeding mechanism. The factors implicated in the initiation and progression of tau misfolding and aggregation are largely unclear. In this study, we evaluated the effect of DNA extracted from diverse prokaryotic and eukaryotic cells in tau misfolding and aggregation. Our results show that DNA from various, unrelated gram-positive and gram-negative bacteria results in a more pronounced tau misfolding compared to eukaryotic DNA. Interestingly, a higher effect in promoting tau aggregation was observed for DNA extracted from certain bacterial species previously detected in the brain, CSF or oral cavity of patients with AD. Our findings indicate that microbial DNA may play a previously overlooked role in the propagation of tau protein misfolding and AD pathogenesis, providing a new conceptual framework that positions the compromised blood-brain and intestinal barriers as important sources of microbial DNA in the CNS, opening novel opportunities for therapeutic interventions.
Collapse
|
22
|
Candelise N, Schmitz M, Thüne K, Cramm M, Rabano A, Zafar S, Stoops E, Vanderstichele H, Villar-Pique A, Llorens F, Zerr I. Effect of the micro-environment on α-synuclein conversion and implication in seeded conversion assays. Transl Neurodegener 2020; 9:5. [PMID: 31988747 PMCID: PMC6966864 DOI: 10.1186/s40035-019-0181-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Background α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson’s disease (PD) or dementia with Lewy bodies (DLB). Main body Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies. Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed. In diagnostics, α-synuclein RT-QuIC exhibits a specificity between 82 and 100% while the sensitivity varies between 70 and 100% among different laboratories. In addition, the α-synuclein RT-QuIC can be used to study the α-synuclein-seeding-characteristics of different α-synucleinopathies and to differentiate between DLB and PD. Conclusion The variable diagnostic accuracy of current α-synuclein RT-QuIC occurs due to different protocols, cohorts and material etc.. An impact of micro-environmental factors on the α-synuclein aggregation and conversion process and the occurrence and detection of differential misfolded α-synuclein types or strains might underpin the clinical heterogeneity of α-synucleinopathies.
Collapse
Affiliation(s)
- Niccolo Candelise
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,3Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Matthias Schmitz
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Katrin Thüne
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Maria Cramm
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| | - Alberto Rabano
- 4Departamento de Neuropatología y Banco de Tejidos (BT-CIEN), Fundación CIEN, Instituto de Salud Carlos III Centro Alzheimer Fundación Reina Sofíac, Valderrebollo n° 5, 28031 Madrid, Spain
| | - Saima Zafar
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,2Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 4, Ghent, Belgium
| | | | - Anna Villar-Pique
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,6CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Madrid, Spain
| | - Franc Llorens
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.,6CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Madrid, Spain.,7Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- 1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
23
|
Gomaa MN, Almaghrabi OA, Elshoura AA, Soliman AM, Gharieb MM. Novel mixture of chloroxylenol and copper alters Candida albicans biofilm formation, biochemical characteristics, and morphological features. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1787664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M. N. Gomaa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - O. A. Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - A. A. Elshoura
- Department of Biology, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - A. M. Soliman
- Botany Department, Faculty of Science, Menofia University, Shebin Elkom, Egypt
| | - M. M. Gharieb
- Botany Department, Faculty of Science, Menofia University, Shebin Elkom, Egypt
| |
Collapse
|
24
|
Modulation of p53 and prion protein aggregation by RNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:933-940. [DOI: 10.1016/j.bbapap.2019.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
25
|
Zacco E, Graña-Montes R, Martin SR, de Groot NS, Alfano C, Tartaglia GG, Pastore A. RNA as a key factor in driving or preventing self-assembly of the TAR DNA-binding protein 43. J Mol Biol 2019; 431:1671-1688. [PMID: 30742796 PMCID: PMC6461199 DOI: 10.1016/j.jmb.2019.01.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are incurable motor neuron diseases associated with muscle weakness, paralysis and respiratory failure. Accumulation of TAR DNA-binding protein 43 (TDP-43) as toxic cytoplasmic inclusions is one of the hallmarks of these pathologies. TDP-43 is an RNA-binding protein responsible for regulating RNA transcription, splicing, transport and translation. Aggregated TDP-43 does not retain its physiological function. Here, we exploit the ability of TDP-43 to bind specific RNA sequences to validate our hypothesis that the native partners of a protein can be used to interfere with its ability to self-assemble into aggregates. We propose that binding of TDP-43 to specific RNA can compete with protein aggregation. This study provides a solid proof of concept to the hypothesis that natural interactions can be exploited to increase protein solubility and could be adopted as a more general rational therapeutic strategy.
We found that binding of the RRM domains of TDP-43 to specific RNA competes with protein aggregation. This study provides a solid proof of concept to the hypothesis that natural interactions can be exploited to increase protein solubility. The concept could be adopted as a more general rationale for protein-specific drug design.
Collapse
Affiliation(s)
- Elsa Zacco
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom; The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom
| | - Ricardo Graña-Montes
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Institutio Catalan de Recerca I Estudis Avancats (ICREA), 23 Passeig Lluıs Companys, 08010 Barcelona, Spain; Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom; The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom; Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, 56126, Italy.
| |
Collapse
|
26
|
Yoo WK, Ryu BH, Kim KR, Wang Y, Le LTHL, Lee JH, Kim KK, Toth G, Ahn DR, Doohun Kim T. Modulating α-synuclein fibril formation using DNA tetrahedron nanostructures. Biochim Biophys Acta Gen Subj 2018; 1863:73-81. [PMID: 30278239 DOI: 10.1016/j.bbagen.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/16/2018] [Accepted: 09/27/2018] [Indexed: 01/15/2023]
Abstract
The small presynaptic protein α-synuclein (α-syn) is involved in the etiology of Parkinson's disease owing to its abnormal misfolding. To date, little information is known on the role of DNA nanostructures in the formation of α-syn amyloid fibrils. Here, the effects of DNA tetrahedrons on the formation of α-syn amyloid fibrils were investigated using various biochemical and biophysical methods such as thioflavin T fluorescence assay, atomic force microscopy, light scattering, transmission electron microscopy, and cell-based cytotoxicity assay. It has been shown that DNA tetrahedrons decreased the level of oligomers and increased the level of amyloid fibrils, which corresponded to decreased cellular toxicity. The ability of DNA tetrahedron to facilitate the formation of α-syn amyloid fibrils demonstrated that structured nucleic acids such as DNA tetrahedrons could modulate the process of amyloid fibril formation. Our study suggests that DNA tetrahedrons could be used as an important facilitator toward amyloid fibril formation of α-synuclein, which may be of significance in finding therapeutic approaches to Parkinson's disease and related synucleinopathies.
Collapse
Affiliation(s)
- Wan Ki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Gergely Toth
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
27
|
Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids. Int J Mol Sci 2017; 18:ijms18051023. [PMID: 28513534 PMCID: PMC5454936 DOI: 10.3390/ijms18051023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrPC) into the pathogenic conformer (PrPSc) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrPC to PrPSc. Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP–NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (1014–1016) of random sequences of the same size (~20–100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation, assuming the advantages and drawbacks of the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technique in the general field of amyloidogenic proteins.
Collapse
|
28
|
Kovachev PS, Banerjee D, Rangel LP, Eriksson J, Pedrote MM, Martins-Dinis MMDC, Edwards K, Cordeiro Y, Silva JL, Sanyal S. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. J Biol Chem 2017; 292:9345-9357. [PMID: 28420731 DOI: 10.1074/jbc.m116.762096] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/12/2017] [Indexed: 01/05/2023] Open
Abstract
Inactivation of the tumor suppressor protein p53 by mutagenesis, chemical modification, protein-protein interaction, or aggregation has been associated with different human cancers. Although DNA is the typical substrate of p53, numerous studies have reported p53 interactions with RNA. Here, we have examined the effects of RNA of varied sequence, length, and origin on the mechanism of aggregation of the core domain of p53 (p53C) using light scattering, intrinsic fluorescence, transmission electron microscopy, thioflavin-T binding, seeding, and immunoblot assays. Our results are the first to demonstrate that RNA can modulate the aggregation of p53C and full-length p53. We found bimodal behavior of RNA in p53C aggregation. A low RNA:protein ratio (∼1:50) facilitates the accumulation of large amorphous aggregates of p53C. By contrast, at a high RNA:protein ratio (≥1:8), the amorphous aggregation of p53C is clearly suppressed. Instead, amyloid p53C oligomers are formed that can act as seeds nucleating de novo aggregation of p53C. We propose that structured RNAs prevent p53C aggregation through surface interaction and play a significant role in the regulation of the tumor suppressor protein.
Collapse
Affiliation(s)
- Petar Stefanov Kovachev
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden
| | - Debapriya Banerjee
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jonny Eriksson
- Department of Chemistry, Uppsala University, Uppsala, 75124, Sweden, and
| | - Murilo M Pedrote
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Maria D C Martins-Dinis
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Katarina Edwards
- Department of Chemistry, Uppsala University, Uppsala, 75124, Sweden, and
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Suparna Sanyal
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden,
| |
Collapse
|
29
|
Silva JL, Cordeiro Y. The "Jekyll and Hyde" Actions of Nucleic Acids on the Prion-like Aggregation of Proteins. J Biol Chem 2016; 291:15482-90. [PMID: 27288413 DOI: 10.1074/jbc.r116.733428] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein misfolding results in devastating degenerative diseases and cancer. Among the culprits involved in these illnesses are prions and prion-like proteins, which can propagate by converting normal proteins to the wrong conformation. For spongiform encephalopathies, a real prion can be transmitted among individuals. In other disorders, the bona fide prion characteristics are still under investigation. Besides inducing misfolding of native proteins, prions bind nucleic acids and other polyanions. Here, we discuss how nucleic acid binding might influence protein misfolding for both disease-related and benign, functional prions and why the line between bad and good amyloids might be more subtle than previously thought.
Collapse
Affiliation(s)
- Jerson L Silva
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, and
| | - Yraima Cordeiro
- the Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|