1
|
Sabet FS, Dabirmanesh B, Sabet HS, Zarei P, Hosseini M, Fathollahi Y, Khajeh K. The electro-responsive nanoliposome as an on-demand drug delivery platform for epilepsy treatment. Int J Pharm 2024; 664:124610. [PMID: 39168285 DOI: 10.1016/j.ijpharm.2024.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Nano-based drug delivery systems are regarded as a promising tool for efficient epilepsy treatment and seizure medication with the least general side effects and socioeconomic challenges. In the current study, we have designed a smart nanoscale drug delivery platform and applied it in the kindling model of epilepsy that is triggered rapidly by epileptic discharges and releases anticonvulsant drugs in situ, such as carbamazepine (CBZ). The CBZ-loaded electroactive ferrocene nanoliposomes had an average diameter of 100.6 nm, a surface charge of -7.08 mV, and high drug encapsulation efficiency (85.4 %). A significant increase in liposome size was observed in response to direct current (50-500 μA) application. This liposome-based drug delivery system can release CBZ at a fast rate in response to both direct current and pulsatile electrical stimulation in vitro. The CBZ-liposome can release the anticonvulsant drug upon epileptiform activity in the kindled rat model and can decline electrographic and behavioral seizure activity in response to electrical stimulation of the hippocampus with an initially subconvulsive current. With satisfactory biosafety results, this "smart" nanocarrier has promising potential as an effective and safe drug delivery system to improve the therapeutic index of antiepileptic drugs.
Collapse
Affiliation(s)
- Fereshte Sadat Sabet
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Hoorie Sadat Sabet
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Parisa Zarei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Nwagwu C, Onugwu A, Echezona A, Uzondu S, Agbo C, Kenechukwu F, Ogbonna J, Ugorji L, Nwobi L, Nwobi O, Mmuotoo O, Ezeibe E, Loretz B, Tarirai C, Mbara KC, Agumah N, Nnamani P, Ofokansi K, Lehr CM, Attama A. Biopolymeric and lipid-based nanotechnological strategies for the design and development of novel mosquito repellent systems: recent advances. NANOSCALE ADVANCES 2024:d4na00474d. [PMID: 39247861 PMCID: PMC11378059 DOI: 10.1039/d4na00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Mosquitoes are the most medically important arthropod vectors of several human diseases. These diseases are known to severely incapacitate and debilitate millions of people, resulting in countless loss of lives. Over the years, several measures have been put in place to control the transmission of mosquito-borne diseases, one of which is using repellents. Repellents are one of the most effective personal protective measures against mosquito-borne diseases. However, conventional delivery systems of repellents (e.g., creams, gels, and sprays) are plagued with toxicity and short-term efficacy issues. The application of biopolymeric and lipid-based systems has been explored over the years to develop better delivery systems for active pharmaceutical ingredients including mosquito repellents. These delivery systems (e.g., solid lipid micro/nanoparticles, micro/nanoemulsions, or liposomes) possess desirable properties such as high biocompatibility, versatility, and controlled/sustained drug delivery, and thus are very important in tackling the clinical challenges of conventional repellent systems. Their capability for controlled/sustained drug release has improved patient compliance as it removes the need for consistent reapplication of repellents. They can also be engineered to reduce repellents' skin permeation, consequently improving their safety. However, despite the benefits that these systems offer very few of them have been successfully translated to the global market for commercial use, a vital challenge that previous reports have not thoroughly examined. The issue of limited clinical translation of novel repellent systems is a vital aspect to consider, as the ultimate goal is to move these systems from bench to bedside. As such, this study seeks to highlight the recent advances in the use of biopolymeric and lipid-based systems for the development of novel mosquito-repellent systems and also analyze the challenges that have limited the clinical translation of these systems while proposing possible strategies to overcome these challenges.
Collapse
Affiliation(s)
- Chinekwu Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Adaeze Onugwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Adaeze Echezona
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Samuel Uzondu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Chinazom Agbo
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Frankline Kenechukwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - John Ogbonna
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Lydia Ugorji
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka Nigeria
| | - Lotanna Nwobi
- Department of Veterinary Physiology and Pharmacology, University of Nigeria Nsukka Nigeria
| | - Obichukwu Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka Enugu State Nigeria
| | - Oluchi Mmuotoo
- Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Ezinwanne Ezeibe
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria Nsukka Nigeria
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Clemence Tarirai
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Kingsley Chimaeze Mbara
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Nnabuife Agumah
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University Nigeria
| | - Petra Nnamani
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Kenneth Ofokansi
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Claus-Micheal Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka Nigeria
| |
Collapse
|
3
|
Wu J, Ji H, Li T, Guo H, Xu H, Zhu J, Tian J, Gao M, Wang X, Zhang A. Targeting the prostate tumor microenvironment by plant-derived natural products. Cell Signal 2024; 115:111011. [PMID: 38104704 DOI: 10.1016/j.cellsig.2023.111011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Prostate cancer is among the most common malignancies for men, with limited therapy options for last stages of the tumor. There are some different options for treatment and control of prostate tumor growth. However, targeting some specific molecules and cells within tumors has been attracted interests in recent years. The tumor microenvironment (TME) has an important role in the initiation of various malignancies, which can also expand the progression of tumor and facilitate invasion of malignant cells. By regulating immune responses and distinct changes in the metabolism of cells in the tumor, TME has substantial effects in the resistance of cancer cells to therapy. TME in various solid cancers like prostate cancer includes various cells, including cancer cells, supportive stromal cells, immunosuppressive cells, and anticancer inflammatory cells. Natural products including herbal-derived agents and also other natural compounds have been well studied for their anti-tumor potentials. These compounds may modulate various signaling pathways involved in TME, such as immune responses, the metabolism of cells, epigenetics, angiogenesis, and extracellular matrix (ECM). This paper provides a review of the current knowledge of prostate TME and complex interactions in this environment. Additionally, the potential use of natural products and also nanoparticles loaded with natural products as therapeutic adjuvants on different cells and therapeutic targets within prostate TME will be discussed.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Hao Ji
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Tiantian Li
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Haifeng Guo
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - HaiFei Xu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jinfeng Zhu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Jiale Tian
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Mingde Gao
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| | - Aihua Zhang
- The operating room of Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, 226361, China.
| |
Collapse
|
4
|
Zhang W, Ezati P, Khan A, Assadpour E, Rhim JW, Jafari SM. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv Colloid Interface Sci 2023; 318:102965. [PMID: 37480830 DOI: 10.1016/j.cis.2023.102965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Parya Ezati
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
5
|
Navolokin N, Lomova M, Bucharskaya A, Godage O, Polukonova N, Shirokov A, Grinev V, Maslyakova G. Antitumor Effects of Microencapsulated Gratiola officinalis Extract on Breast Carcinoma and Human Cervical Cancer Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1470. [PMID: 36837099 PMCID: PMC9960207 DOI: 10.3390/ma16041470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Flavonoid-containing Gratiola officinalis extract has been studied in relation to breast carcinoma and human cervical cancer cells in encapsulated and native form. Encapsulation was realized in polymer shells, which were formed by the layer-by-layer method using sequential adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on the destructible cores. The extract was prepared by the author's method and characterized using high performance liquid chromatography. By means of optical and fluorescent microscopy, cell changes under the action of pure and encapsulated extracts were comprehensively studied, and statistical analysis was carried out. Cells were stained with propidium iodide, acridine orange, and Hoechst 33258. A fluorescence microscope with a digital video camera were used for cell imaging. The encapsulated extract caused 100% death of breast cancer SKBR-3 cells and 34% death of cervical cancer HeLa cells and prevented the formation of autophagosomes in both cultures. Analysis of the viability and morphological features of tumor cells under the action of microencapsulated extract allows us to consider microencapsulation as an effective strategy for delivering Gratiola officinalis extract to tumor cells and a promising way to overcome the protective autophagy.
Collapse
Affiliation(s)
- Nikita Navolokin
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| | - Maria Lomova
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| | - Alla Bucharskaya
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, Tomsk 634050, Russia
| | - Olga Godage
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
| | - Natalya Polukonova
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
| | - Alexander Shirokov
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), Saratov 410028, Russia
| | - Vyacheslav Grinev
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), Saratov 410028, Russia
| | - Galina Maslyakova
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| |
Collapse
|
6
|
Provision and assessment properties of nanoliposomes containing macroalgae extracts of Sargassum boveanume and Padina pavonica. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Guedes M, Vieira SF, Reis RL, Ferreira H, Neves NM. Potent antioxidant and anti-inflammatory bioactivities of fish roe-derived extracts. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Fernandes MJG, Pereira RB, Rodrigues ARO, Vieira TF, Fortes AG, Pereira DM, Sousa SF, Gonçalves MST, Castanheira EMS. Liposomal Formulations Loaded with a Eugenol Derivative for Application as Insecticides: Encapsulation Studies and In Silico Identification of Protein Targets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3583. [PMID: 36296773 PMCID: PMC9611868 DOI: 10.3390/nano12203583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
A recently synthesized new eugenol derivative, ethyl 4-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)butanoate, with a high insecticidal activity against Sf9 (Spodoptera frugiperda) insect cells, was encapsulated in the liposomal formulations of egg-phosphatidylcholine/cholesterol (Egg-PC:Ch) 70:30 and 100% dioleoylphosphatidylglycerol (DOPG), aiming at the future application as insecticides. Compound-loaded DOPG liposomes have sizes of 274 ± 12 nm, while Egg-PC:Ch liposomes exhibit smaller hydrodynamic diameters (69.5 ± 7 nm), high encapsulation efficiency (88.8 ± 2.7%), higher stability, and a more efficient compound release, thus, they were chosen for assays in Sf9 insect cells. The compound elicited a loss of cell viability up to 80% after 72 h of incubation. Relevantly, nanoencapsulation maintained the toxicity of the compound toward insect cells while lowering the toxicity toward human cells, thus showing the selectivity of the system. Structure-based inverted virtual screening was used to predict the most likely targets and molecular dynamics simulations and free energy calculations were used to demonstrate that this molecule can form a stable complex with insect odorant binding proteins and/or acetylcholinesterase. The results are promising for the future application of compound-loaded nanoliposome formulations as crop insecticides.
Collapse
Affiliation(s)
- Maria José G. Fernandes
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Renato B. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM—Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - A. Gil Fortes
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM—Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
10
|
Bottom–up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03867-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Odette WL, Hennecker CD, Mittermaier AK, Mauzeroll J. EDTA-Gradient Loading of Doxorubicin into Ferrocene-Containing Liposomes: Effect of Lipid Composition and Visualization of Triggered Release by Cryo-TEM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11222-11232. [PMID: 34524822 DOI: 10.1021/acs.langmuir.1c01466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient delivery of therapeutic compounds to their sites of action has been a ubiquitous concern throughout the history of human medicine. The tumor microenvironment offers a variety of endogenous stimuli that may be exploited by a responsive nanocarrier, including heterogeneities in redox potential. In the early stages of the design of such responsive delivery systems, it is necessary to develop a comprehensive understanding of the biophysical mechanism by which the stimulus response occurs, as well as how the response may change from the inclusion of cargo compounds. We describe the optimization of lipid compositions for liposomes containing synthetic ferrocene-appended lipids to achieve highly efficient loading of doxorubicin via an ethylenediaminetetraacetic acid (EDTA) gradient. Liposomes containing ferrocenylated phospholipid are shown to be unstable to the loading conditions, while those including a ferrocenylated alkylammonium amphiphile obtain a near-quantitative loading efficiency. Calorimetric studies demonstrate that this instability is the consequence of the relative degree of lipid hydrolysis that occurs under the acidic loading conditions. Drug-loaded liposomes of the optimized composition are studied by cryo-TEM; the presence of doxorubicin aggregates is observed inside vesicles, and doxorubicin release, as well as the changes in membrane structure resulting from oxidant treatment, is also observed by cryogenic transmission electron microscopy (cryo-TEM). These results further demonstrate the potential of ferrocene lipids in the design of redox-responsive nanocarriers and begin to explore their possible role as probes of membrane dynamics.
Collapse
Affiliation(s)
- William L Odette
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal, Quebec H3A 0B8, Canada
| | - Christopher D Hennecker
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal, Quebec H3A 0B8, Canada
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal, Quebec H3A 0B8, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
12
|
Advances in nano-biomaterials and their applications in biomedicine. Emerg Top Life Sci 2021; 5:169-176. [PMID: 33825835 DOI: 10.1042/etls20200333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Nanotechnology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.
Collapse
|
13
|
Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. Int J Food Microbiol 2021; 342:109071. [PMID: 33578302 DOI: 10.1016/j.ijfoodmicro.2021.109071] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022]
Abstract
Biodegradable films reinforced with bio-nanomaterials are a solution for developing active packaging systems, shelf-life extension and protection of environment against conventional packaging. This study aimed to characterize the biocompatible chitosan (CS) films formulated with nano-liposomal garlic essential oil (NLGEO) and assess the physicho-mechanical, morphology properties and also microbial and chemical changes in chicken fillets during storage time at 4 °C. NLGEO was obtained by thin-layer hydration-sonication method using glycerol and tween 80 as plasticizer and emulsifier, respectively. Different levels (0, 0.5, 1 and 2%) of NLGEO with average size of ~101 nm were added into the chitosan matrix and films fabricated by casting method. The average size, polydispersity index and zeta potential were ~101 nm, 0.127 and -7.23, respectively. Control samples showed higher values for pH, total volatile nitrogen (TVN), peroxide value (PV), thiobarbituric acid-reactive substances (TBARS), and microbial count including total viable count (TVC), coliforms, Staphylococcus aureus and psychrotroph bacteria than treated samples. The films with higher NLGEO content represented stronger inhibitory effects. The incorporation of NLGEO improved the mechanical properties and water resistance of active films. Microstructure analysis also showed a nearly smooth surface morphology and homogenous structure with a good dispersion for NLGEO films. Significant synergistic effects in chemical and bacterial preservation of chicken fillet samples were observed by NLGEO films. The optimal mechanical and barrier properties of chitosan-NLGEO films introduced it a potential active packaging to extend the shelf life of chicken fillet.
Collapse
|
14
|
Noschka R, Gerbl F, Löffler F, Kubis J, Rodríguez AA, Mayer D, Grieshober M, Holch A, Raasholm M, Forssmann WG, Spellerberg B, Wiese S, Weidinger G, Ständker L, Stenger S. Unbiased Identification of Angiogenin as an Endogenous Antimicrobial Protein With Activity Against Virulent Mycobacterium tuberculosis. Front Microbiol 2021; 11:618278. [PMID: 33537017 PMCID: PMC7848861 DOI: 10.3389/fmicb.2020.618278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is a highly prevalent infectious disease with more than 1.5 million fatalities each year. Antibiotic treatment is available, but intolerable side effects and an increasing rate of drug-resistant strains of Mycobacterium tuberculosis (Mtb) may hamper successful outcomes. Antimicrobial peptides (AMPs) offer an alternative strategy for treatment of infectious diseases in which conventional antibiotic treatment fails. Human serum is a rich resource for endogenous AMPs. Therefore, we screened a library generated from hemofiltrate for activity against Mtb. Taking this unbiased approach, we identified Angiogenin as the single compound in an active fraction. The antimicrobial activity of endogenous Angiogenin against extracellular Mtb could be reproduced by synthetic Angiogenin. Using computational analysis, we identified the hypothetical active site and optimized the lytic activity by amino acid exchanges. The resulting peptide-Angie1-limited the growth of extra- and intracellular Mtb and the fast-growing pathogens Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Toward our long-term goal of evaluating Angie1 for therapeutic efficacy in vivo, we demonstrate that the peptide can be efficiently delivered into human macrophages via liposomes and is not toxic for zebrafish embryos. Taken together, we define Angiogenin as a novel endogenous AMP and derive the small, bioactive fragment Angie1, which is ready to be tested for therapeutic activity in animal models of tuberculosis and infections with fast-growing bacterial pathogens.
Collapse
Affiliation(s)
- Reiner Noschka
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Florian Löffler
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Jan Kubis
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Armando A Rodríguez
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany.,Core Facility of Functional Peptidomics, Ulm University, Ulm, Germany
| | - Daniel Mayer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Mark Grieshober
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Armin Holch
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martina Raasholm
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | | | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility of Functional Peptidomics, Ulm University, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
15
|
Nigro F, Cerqueira Pinto CDS, dos Santos EP, Mansur CRE. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fiammetta Nigro
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Treatment of iron deficiency anemia with liposomal iron in inflammatory bowel disease: efficacy and impact on quality of life. Int J Clin Pharm 2020; 42:895-902. [PMID: 32367457 DOI: 10.1007/s11096-020-01044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Background Anemia is a clinical condition frequently seen in patients with inflammatory bowel disease, which is responsible for a significant loss of quality of life. Objective To assess the efficacy and safety of using oral liposomal iron to treat iron deficiency anemia in inflammatory bowel disease patients, as well as assess the impact of this treatment on psychometric scores. Methods Patients with inactive/mildly active inflammatory bowel disease were screened for anemia in this interventional pilot study conducted from November 2016 to March 2018. Patients with mild anemia were treated with oral liposomal iron for 8 weeks. Main outcome measure The primary endpoint of the study was the response to liposomal oral iron therapy. Treatment response was defined as patients who achieved a hemoglobin increase of ≥ 1 g/dL and/or hemoglobin normalization by the 8th week of treatment. Results Out of 200 screened patients, 40 (20%) had anemia. Of the 21 patients who completed treatment, 13 (62%) responded to oral liposomal iron replacement therapy (mean increases of hemoglobin from 11.4 to 12.6 g/dL). The transferrin saturation index increased by an average of 10.2 (p = 0.006) and the quality of life by 26.3 (p < 0.0001). There was also a mean reduction of 9.2 in the perception of fatigue (p < 0.0001). Conclusion Treatment with oral liposomal iron is effective in improving mild iron deficiency anemia and quality of life, as well as in decreasing fatigue in patients with inactive or mildly active inflammatory bowel disease.
Collapse
|
18
|
Campani V, Scotti L, Silvestri T, Biondi M, De Rosa G. Skin permeation and thermodynamic features of curcumin-loaded liposomes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:18. [PMID: 31965329 DOI: 10.1007/s10856-019-6351-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
This work describes the development of liposomes encapsulating curcumin (CURC) aiming to provide insights on the influence of CURC on the thermodynamic and skin permeation/penetration features of the vesicles. CURC-loaded liposomes were prepared by hydration of lipid film, in the 0.1-15% CURC:DPPC w/w ratio range. The obtained formulations were characterized for their size distribution, zeta potential and vesicle deformability, along with their thermodynamic properties and ex vivo skin penetration/permeation ability. Liposome size was 110-130 nm for all formulations, with fairly narrow size distribution (polydispersity index was ≤0.20) and a zeta potential mildly decreasing with CURC loading. DSC outcomes indicated that CURC interferes with the packing of DPPC acyl chains in liposome bilayer when CURC percentage was at least 10%, leading to a more fluid state than blank and low-payload vesicles. Consistently, the deformability index of liposomes with 15% CURC:DPPC was strongly increased compared to other formulations. This is congruent with ex vivo skin penetration/permeation results, which showed how more deformable liposomes showed an improved deposition in the epidermis, which acts as a reservoir for the active molecule. Altogether, results hint at a possible application of high payload liposomes for improved topical dermal accumulations of actives.
Collapse
Affiliation(s)
- Virginia Campani
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, Napoli, Italy
| | - Lorena Scotti
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, Napoli, Italy
| | - Teresa Silvestri
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, Napoli, Italy
| | - Marco Biondi
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, Napoli, Italy.
- Interdisciplinary Research Centre on Biomaterials-CRIB, Università di Napoli Federico II, P.le Tecchio, 80, Napoli, Italy.
| | - Giuseppe De Rosa
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials-CRIB, Università di Napoli Federico II, P.le Tecchio, 80, Napoli, Italy
| |
Collapse
|
19
|
Simão AMS, Bolean M, Favarin BZ, Veschi EA, Tovani CB, Ramos AP, Bottini M, Buchet R, Millán JL, Ciancaglini P. Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators. J Bone Miner Metab 2019; 37:607-613. [PMID: 30324534 PMCID: PMC6465158 DOI: 10.1007/s00774-018-0962-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.
Collapse
Affiliation(s)
- Ana Maria Sper Simão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Maytê Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Bruno Zoccaratto Favarin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ekeveliny Amabile Veschi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Camila Bussola Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Rene Buchet
- UFR Chimie Biochimie, Universite Lyon 1, 69 622, Villeurbanne Cedex, France
- ICBMS, UMR 5246, CNRS, 69 622, Villeurbanne Cedex, France
- INSA, Lyon, 69 622, Villeurbanne Cedex, France
- CPE, Lyon, 69 622, Villeurbanne Cedex, France
- Universite de Lyon, 69 622, Villeurbanne Cedex, France
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
20
|
Sybachin AV, Lokova AY, Spiridonov VV, Novoskol’tseva OA, Shtykova EV, Samoshin VV, Migulin VA, Yaroslavov AA. The Effect of Cationic Polylysine on the Release of an Encapsulated Substance from pH-Sensitive Anionic Liposomes. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19030179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Abbati G, Incerti F, Boarini C, Pileri F, Bocchi D, Ventura P, Buzzetti E, Pietrangelo A. Safety and efficacy of sucrosomial iron in inflammatory bowel disease patients with iron deficiency anemia. Intern Emerg Med 2019; 14:423-431. [PMID: 30499070 DOI: 10.1007/s11739-018-1993-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Iron deficiency anemia (IDA) is one of the most common complications of inflammatory bowel disease (IBD). We planned a prospective study to address tolerability and efficacy of sucrosomial iron, a new oral formulation of ferric pyrophosphate, in IBD patients. Thirty patients with a confirmed diagnosis of Crohn's Disease (CD) or ulcerative colitis (UC) and mild IDA were enrolled. Patients with severe IBD were excluded. All patients underwent 12 weeks of oral treatment with 30 mg/day of sucrosomial iron. Treatment compliance and adverse events were investigated every 4 weeks. Iron status, hematological parameters and IBD activity scores were determined at baseline and at the end of treatment, as well as serum hepcidin and non-transferrin bound iron (NTBI) levels. Twenty-four (80%) patients took more than 90% of the prescribed regimen. Forty-four adverse events (AEs) were recorded, but none of them is considered certainly or probably related to the study treatment. Interestingly, only eleven gastrointestinal events were recorded in 9 (30%) patients. At the end of treatment, all iron parameters improved significantly and Hb increased in 86% of patients (from 11.67 to 12.37 g/dl, p = 0.001). Serum hepcidin showed a significant increase in 79% of patients and became positively correlated with C-reactive protein (CRP) at the end of the study, while NTBI remained below the detection threshold after iron supplementation. The IBD activity scores improved in both CD and UC. This pilot interventional study supports the therapeutic use of sucrosomial iron in IBD and paves the way for future studies in larger or more difficult IBD populations.
Collapse
Affiliation(s)
- Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy.
| | - Federica Incerti
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy
| | - Francesca Pileri
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy
| | - Davide Bocchi
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy
| | - Paolo Ventura
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy
| | - Elena Buzzetti
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy
| | - Antonello Pietrangelo
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Via DEL Pozzo 71, 41124, Modena, Italy
| |
Collapse
|
22
|
McConnell EM, Ventura K, Dwyer Z, Hunt V, Koudrina A, Holahan MR, DeRosa MC. In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System To Study Dopamine Dysregulation in the Central Nervous System. ACS Chem Neurosci 2019; 10:371-383. [PMID: 30160936 DOI: 10.1021/acschemneuro.8b00292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The delivery of therapeutics across the blood-brain barrier remains a considerable challenge in investigating central nervous system related processes. In this work, a liposome vehicle was surface-modified with an aptamer that binds to the transferrin receptor and was loaded with two different dopamine-binding aptamer payloads. This system was effectively used to promote the delivery of the aptamer cargo from the peripheral injection site into the brain. The effect of these delivered aptamers on behavior was investigated in vivo in a locomotor task. The first dopamine binding aptamer assessed was a DNA aptamer, the binding of which had been previously validated through the aptamer-based biosensor development reported by several independent research groups. The second aptamer investigated was the result of a novel in vitro selection experiment described herein. Our data suggest that systemic administration of the modified liposomes led to delivery of the dopamine aptamers into the brain. Fluorescence microscopy revealed differential distribution of fluorescence based on the presence or absence of the transferrin receptor aptamer on the surface of fluorescently modified liposomes. In a behavioral experiment using cocaine administration to induce elevated concentrations of neural dopamine, systemic pretreatment with the dopamine aptamer-loaded liposomes reduced cocaine-induced hyperlocomotion. Multiple controls including a transferrin-negative liposome control and transferrin-positive liposomes loaded with either a nonbinding, base-substituted dopamine aptamer or a random oligonucleotide were investigated. None of these controls altered cocaine-induced hyperlocomotion. Chronic systemic administration of the modified liposomes produced no deleterious neurobehavioral or neural degenerative effects. Importantly, this work is one example of an application for this versatile multiaptamer payload/targeting system. Its general application is limited only by the availability of aptamers for specific neural targets.
Collapse
Affiliation(s)
- Erin M. McConnell
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zach Dwyer
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Vernon Hunt
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anna Koudrina
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
23
|
Shen M, Lin M, Zhu M, Zhang W, Lu D, Liu H, Deng J, Que K, Zhang X. MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro. Biochim Biophys Acta Gen Subj 2019; 1863:167-181. [DOI: 10.1016/j.bbagen.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
|
24
|
Mukerabigwi JF, Ge Z, Kataoka K. Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy. Chemistry 2018; 24:15706-15724. [DOI: 10.1002/chem.201801159] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine Institute of Industrial Promotion-Kawasaki 3-25-14 Tonomachi Kawasaki-ku Kawasaki 210-0821 Japan
- Policy Alternatives Research Institute The University of Tokyo Tokyo 113-0033 Japan
| |
Collapse
|
25
|
Bottini M, Mebarek S, Anderson KL, Strzelecka-Kiliszek A, Bozycki L, Simão AMS, Bolean M, Ciancaglini P, Pikula JB, Pikula S, Magne D, Volkmann N, Hanein D, Millán JL, Buchet R. Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochim Biophys Acta Gen Subj 2018; 1862:532-546. [PMID: 29108957 PMCID: PMC5801150 DOI: 10.1016/j.bbagen.2017.11.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.
Collapse
Affiliation(s)
- Massimo Bottini
- University of Rome Tor Vergata, Department of Experimental Medicine and Surgery, 00133 Roma, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Saida Mebarek
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Karen L Anderson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Agnieszka Strzelecka-Kiliszek
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Lukasz Bozycki
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ana Maria Sper Simão
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Departamento de Química, 14040-901 Ribeirão Preto, SP, Brazil
| | - Joanna Bandorowicz Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology, Department of Biochemistry, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - David Magne
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France
| | - Niels Volkmann
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dorit Hanein
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rene Buchet
- Universite Lyon 1, UFR Chimie Biochimie, 69 622 Villeurbanne Cedex, France; ICBMS UMR 5246 CNRS, 69 622 Villeurbanne Cedex, France; INSA, Lyon, 69 622 Villeurbanne Cedex, France; CPE, Lyon, 69 622 Villeurbanne Cedex, France; Universite de Lyon, 69 622 Villeurbanne Cedex, France.
| |
Collapse
|
26
|
Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm 2017; 538:40-47. [PMID: 29294324 DOI: 10.1016/j.ijpharm.2017.12.047] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 11/23/2022]
Abstract
The present investigation reports the development of PEG-modified liposomes for the delivery of naturally occurring resveratrol. PEG-modified liposomes were prepared by direct sonication of the phospholipid aqueous dispersion, in the presence of two PEG-surfactants. Small, spherical, unilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, and SAXS. The aging of the vesicles was assessed by using the Turbiscan® technology, and their physical stability was evaluated in vitro in simulated body fluids, results showing that the key features of the liposomes were preserved. The biocompatibility of the formulations was demonstrated in an ex vivo model of hemolysis in human erythrocytes. Further, the incorporation of resveratrol in PEG-modified liposomes did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also able to ensure an optimal protection against oxidative stress in an ex vivo human erythrocytes-based model. Therefore, the proposed PEG-modified liposomes, which were prepared by a simple and reliable method, represent an interesting approach to safely deliver resveratrol, ensuring the preservation of the carrier structural integrity in the biological fluids, and the antioxidant efficacy of the polyphenol to be exploited against oxidative stress associated with cancer.
Collapse
|
27
|
Abstract
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid-protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid-protein and lipid-lipid interfaces throughout the process.
Collapse
|
28
|
Chountoulesi M, Naziris N, Pippa N, Demetzos C. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. J Liposome Res 2017. [DOI: 10.1080/08982104.2017.1343836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maria Chountoulesi
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Naziris
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9:79-89. [PMID: 28510082 PMCID: PMC5425815 DOI: 10.1007/s12551-016-0246-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/26/2016] [Indexed: 02/03/2023] Open
Abstract
The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.
Collapse
Affiliation(s)
- Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil.
| | - Marcos A E Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Camila B Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Villamil Giraldo AM, Fyrner T, Wennmalm S, Parikh AN, Öllinger K, Ederth T. Spontaneous Vesiculation and pH-Induced Disassembly of a Lysosomotropic Detergent: Impacts on Lysosomotropism and Lysosomal Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13566-13575. [PMID: 27936755 DOI: 10.1021/acs.langmuir.6b03458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Lysosomotropic detergents (LDs) selectively rupture lysosomal membranes through mechanisms that have yet to be characterized. A consensus view, currently, holds that LDs, which are weakly basic, diffuse across cellular membranes as monomers in an uncharged state, and via protonation in the acidic lysosomal compartment, they become trapped, accumulate, and subsequently solubilize the membrane and induce lysosomal membrane permeabilization. Here we demonstrate that the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) spontaneously assembles into vesicles at, and above, cytosolic pH, and that the vesicles disassemble as the pH reaches 6.4 or lower. The aggregation commences at concentrations below the range of those used in cell studies. Assembly and disassembly of the vesicles was studied via dynamic light scattering, zeta potential measurements, cryo-TEM, and fluorescence correlation spectroscopy and was found to be reversible via control of the pH. Aggregation of MSDH into closed vesicles under cytosolic conditions is at variance with the commonly held view of LD behavior, and we propose that endocytotic pathways should be considered as possible routes of LD entry into lysosomes. We further demonstrate that MSDH vesicles can be loaded with fluorophores via a solution transition from low to high pH, for subsequent release when the pH is lowered again. The ability to encapsulate molecular cargo into MSDH vesicles together with its ability to disaggregate at low pH and to permeabilize the lysosomal membrane presents an intriguing possibility to use MSDH as a delivery system.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping, University , SE-581 85 Linköping, Sweden
| | | | - Stefan Wennmalm
- Royal Institute of Technology, Department of Applied Physics, Experimental Biomolecular Physics, Scilifelab , 171 65 Solna, Sweden
| | - Atul N Parikh
- Departments of Biomedical Engineering and Materials Science & Engineering, University of California , Davis, California 95616, United States
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping, University , SE-581 85 Linköping, Sweden
| | | |
Collapse
|
31
|
Fotoran WL, Colhone MC, Ciancaglini P, Stabeli RG, Wunderlich G. Merozoite-Protein Loaded Liposomes Protect against Challenge in Two Murine Models of Plasmodium Infection. ACS Biomater Sci Eng 2016; 2:2276-2286. [DOI: 10.1021/acsbiomaterials.6b00492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wesley L. Fotoran
- Department
of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelle C. Colhone
- Department
of Chemistry, FFCLRP-USP, University of São Paulo, Ribeirão
Preto, Brazil
| | - Pietro Ciancaglini
- Department
of Chemistry, FFCLRP-USP, University of São Paulo, Ribeirão
Preto, Brazil
| | - Rodrigo G. Stabeli
- Centro de Estudos
de Biomoléculas Aplicadas a Saúde, Fiocruz−Fundação
Oswaldo Cruz, Ministério da Saúde, e Departamento de
Medicina da Universidade Federal de Rondônia (UNIR), Porto Velho, Rondônia, Brazil
| | - Gerhard Wunderlich
- Department
of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|