1
|
Ren W, Wang J, Zeng Y, Wang T, Meng J, Yao X. Transcriptome identification of differential mammary genes of Kazakh horses during early pregnancy. Gene 2024; 902:148189. [PMID: 38246578 DOI: 10.1016/j.gene.2024.148189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Kazakh mares have attracted widespread attention with their outstanding lactation traits. Lactation is a complex dynamic process regulated by multiple factors. The extensive application of transcriptome sequencing technology enables researchers to further explore this biological issue. This study selected three pregnant and three non-pregnant Kazakh mares as the research subject. Their mammary glands were taken for transcriptome sequencing. The results show that there are 9 lncRNAs and 122 mRNAs differentially expressed between the two groups. GO enrichment analysis shows that there are 175 molecular functions, 59 cellular components, and 555 biological processes, including cellular hormone metabolic process, hormone catabolic process, and I-kappaB kinase/NF-kappaB signaling. KEGG enrichment analysis exhibits that these differential genes are mainly enriched in the NF-kappa B signaling pathway, steroid hormone biosynthesis, breast cancer, ECM-receptor interaction, and MAPK signaling pathway. WNT4, DPP4, and NFKBIA are key nodes regulating breast activation. Conclusions: Through the comparative analysis of the transcriptome data of mammary tissues of pregnant and non-pregnant mares, relevant differentially expressed genes are screened and analyzed. This study provides valuable fundamental data for investigating candidate genes related to the lactation regulation and mammogenesis of Kazakh horses.
Collapse
Affiliation(s)
- Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China.
| |
Collapse
|
2
|
Jiang Y, Zhao Y, Li ZY, Chen S, Fang F, Cai JH. Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. Int J Cardiol 2023; 384:90-99. [PMID: 37019219 DOI: 10.1016/j.ijcard.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previous studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin 132011, China
| | - Zheng-Yi Li
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Shuang Chen
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Fang Fang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Jian-Hui Cai
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
3
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Hao A, Wang Y, Stovall DB, Wang Y, Sui G. Emerging Roles of LncRNAs in the EZH2-regulated Oncogenic Network. Int J Biol Sci 2021; 17:3268-3280. [PMID: 34512145 PMCID: PMC8416728 DOI: 10.7150/ijbs.63488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is a life-threatening disease, but cancer therapies based on epigenetic mechanisms have made great progress. Enhancer of zeste homolog 2 (EZH2) is the key catalytic component of Polycomb repressive complex 2 (PRC2) that mediates the tri-methylation of lysine 27 on histone 3 (H3K27me3), a well-recognized marker of transcriptional repression. Mounting evidence indicates that EZH2 is elevated in various cancers and associates with poor prognosis. In addition, many studies revealed that EZH2 is also involved in transcriptional repression dependent or independent of PRC2. Meanwhile, long non-coding RNAs (lncRNAs) have been reported to regulate numerous and diverse signaling pathways in oncogenesis. In this review, we firstly discuss functional interactions between EZH2 and lncRNAs that determine PRC2-dependent and -independent roles of EZH2. Secondly, we summarize the lncRNAs regulating EZH2 expression at transcription, post-transcription and post-translation levels. Thirdly, we review several oncogenic pathways cooperatively regulated by lncRNAs and EZH2, including the Wnt/β-catenin and p53 pathways. In conclusion, lncRNAs play a key role in the EZH2-regulated oncogenic network with many fertile directions to be explored.
Collapse
Affiliation(s)
- Aixin Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yunxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, the United States
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Chen M, Li S, Li W, Zhang ZP, Zhang X, Zhang XE, Ge F, Cui Z. Nanoscale Imaging of RNA-Protein Interactions with a Photoactivatable Trimolecular Fluorescence Complementation System. ACS Chem Biol 2021; 16:1003-1010. [PMID: 34009928 DOI: 10.1021/acschembio.0c00945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imaging RNA-protein interaction in the cellular space with single molecule sensitivity is attractive for studying gene expression and regulation, but remains a challenge. In this study, we reported a photoactivatable trimolecular fluorescence complementation (TriFC) system based on fluorescent protein, mIrisFP, to identify and visualize RNA-protein interactions in living mammalian cells. We also combined this TriFC system with photoactivated localization microscopy (PALM), named the TriFC-PALM technique, which allowed us to image the RNA-protein interactions with single molecule sensitivity. Using this TriFC-PALM technique, we identified the actin-bundling protein, FSCN1, specifically interacting with the HOX Transcript Antisense RNA (HOTAIR). The TriFC-PALM imaging acquired a higher resolution compared with the traditional method of total internal reflection (TIRF) imaging. The TriFC-PALM thus provides a useful tool for imaging and identifying the RNA-protein interactions inside cells at the nanometer scale.
Collapse
Affiliation(s)
- Minghai Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Siting Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Huang J, Li M, Li J, Liang B, Chen Z, Yang J, Guo X, Huang S, Gu L, Su L. LncRNA H19 rs4929984 Variant is Associated with Coronary Artery Disease Susceptibility in Han Chinese Female Population. Biochem Genet 2021; 59:1359-1380. [PMID: 33826032 DOI: 10.1007/s10528-021-10055-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been reported to play an important role in cardiovascular diseases. The present study aimed to investigate the levels of lncRNA H19 in patients with coronary artery disease (CAD) and the genetic association of lncRNA H19 rs217727 and rs4929984 polymorphisms with CAD susceptibility. We detected an upregulated expression of lncRNA H19 in the peripheral blood of CAD patients compared with healthy controls, and the area under the receiver operating characteristic curve of lncRNA H19 for CAD diagnosis was 0.918. In addition, rs4929984 was associated with the susceptibility of Han Chinese females to CAD, as shown in the additive and dominant models, and the significant association remained after adjusting for age and Bonferroni correction. The A allele carriers of rs4929984 were correlated with females' susceptibility to CAD compared with the C allele, and the A-G haplotype of rs4929984-rs217727 was associated with females' susceptibility to CAD. Furthermore, rs217727 and rs4929984 were associated with the levels of clinicopathological parameters of CAD cases. We suggest that lncRNA H19 has a potential to be a diagnostic biomarker for CAD; rs4929984 polymorphism is associated with females' susceptibility to CAD in the Han Chinese population, and lncRNA H19 variants may influence lipid metabolism, inflammation, and coagulation function of CAD patients.
Collapse
Affiliation(s)
- Jiao Huang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Minhua Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinhong Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Baoyun Liang
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Zhaoxia Chen
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaojing Guo
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Siyun Huang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory Networks of LncRNA MALAT-1 in Cancer. Cancer Manag Res 2020; 12:10181-10198. [PMID: 33116873 PMCID: PMC7575067 DOI: 10.2147/cmar.s276022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding (lnc)RNAs are a group of RNAs with a length greater than 200 nt that do not encode a protein but play an essential role in regulating the expression of target genes in normal biological contexts as well as pathologic processes including tumorigenesis. The lncRNA metastasis-associated lung adenocarcinoma transcript (MALAT)-1 has been widely studied in cancer. In this review, we describe the known functions of MALAT-1; its mechanisms of action; and associated signaling pathways and their clinical significance in different cancers. In most malignancies, including lung, colorectal, thyroid, and other cancers, MALAT-1 functions as an oncogene and is upregulated in tumors and tumor cell lines. MALAT-1 has a distinct mechanism of action in each cancer type and is thus at the center of large gene regulatory networks. Dysregulation of MALAT-1 affects cellular processes such as alternative splicing, epithelial–mesenchymal transition, apoptosis, and autophagy, which ultimately results in the abnormal cell proliferation, invasion, and migration that characterize cancers. In other malignancies, such as glioma and endometrial carcinoma, MALAT-1 functions as a tumor suppressor and thus forms additional regulatory networks. The current evidence indicates that MALAT-1 and its associated signaling pathways can serve as diagnostic or prognostic biomarker or therapeutic target in the treatment of many cancers.
Collapse
Affiliation(s)
- Shijian Fu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yanhong Wang
- Department of Laboratory Medicine, Yuebei People's Hospital of Shaoguan, The Affiliated Hospital of Shantou University, Shaoguan 512025, People's Republic of China
| | - Hang Li
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Leilei Chen
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing 100029, People's Republic of China
| | - Quanzhong Liu
- Department of Medical Genetics, Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
8
|
Hao Z, Luo Y, Wang J, Hu J, Liu X, Li S, Jin X, Ke N, Zhao M, Hu L, Lu Y, Wu X, Qiao L. RNA-Seq Reveals the Expression Profiles of Long Non-Coding RNAs in Lactating Mammary Gland from Two Sheep Breeds with Divergent Milk Phenotype. Animals (Basel) 2020; 10:ani10091565. [PMID: 32899158 PMCID: PMC7552154 DOI: 10.3390/ani10091565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) play a key role in regulating the expression level of mRNAs. The expression profiles of ovine mammary gland were investigated in two sheep breeds with divergent milk phenotype using RNA-Seq. A total of 1894 lncRNAs were found to be expressed and 68 of these were differentially expressed between the two breeds. Some important Gene Ontogeny (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were related to lactation and mammary gland morphogenesis were found for the target genes of differentially expressed lncRNAs. This study can improve our understanding of the functions of lncRNAs in the regulation of lactation, milk yield, and milk components in sheep. Abstract Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.
Collapse
|
9
|
Leite ML, Oliveira KBS, Cunha VA, Dias SC, da Cunha NB, Costa FF. Epigenetic Therapies in the Precision Medicine Era. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Michel Lopes Leite
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | | | - Victor Albuquerque Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Simoni Campos Dias
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
- Animal Biology DepartmentUniversidade de Brasília UnB, Campus Darcy Ribeiro. Brasilia DF 70910‐900 Brazil
| | - Nicolau Brito da Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Fabricio F. Costa
- Cancer Biology and Epigenomics ProgramAnn & Robert H Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- MATTER Chicago 222 W. Merchandise Mart Plaza, Suite 12th Floor Chicago IL 60654 USA
- Genomic Enterprise (www.genomicenterprise.com) San Diego, CA 92008 and New York NY 11581 USA
| |
Collapse
|
10
|
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes (Basel) 2019; 10:genes10010052. [PMID: 30654440 PMCID: PMC6356509 DOI: 10.3390/genes10010052] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
In contrast to the amazing exponential growth in knowledge related to long non-coding RNAs (lncRNAs) involved in cell homeostasis or dysregulated pathological states, little is known so far about the links between the chemical modifications occurring in lncRNAs and their function. Generally, ncRNAs are post-transcriptional regulators of gene expression, but RNA modifications occurring in lncRNAs generate an additional layer of gene expression control. Chemical modifications that have been reported in correlation with lncRNAs include m⁶A, m⁵C and pseudouridylation. Up to date, several chemically modified long non-coding transcripts have been identified and associated with different pathologies, including cancers. This review presents the current level of knowledge on the most studied cancer-related lncRNAs, such as the metastasis associated lung adenocarcinoma transcript 1 (MALAT1), the Hox transcript antisense intergenic RNA (HOTAIR), or the X-inactive specific transcript (XIST), as well as more recently discovered forms, and their potential roles in different types of cancer. Understanding how these RNA modifications occur, and the correlation between lncRNA changes in structure and function, may open up new therapeutic possibilities in cancer.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Simona Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Andreea Daniela Lazar
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
11
|
Li L, Wang L, Li H, Han X, Chen S, Yang B, Hu Z, Zhu H, Cai C, Chen J, Li X, Huang J, Gu D. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 2018; 275:359-367. [PMID: 30015300 DOI: 10.1016/j.atherosclerosis.2018.06.866] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/31/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Dysregulation of long non-coding RNAs (lncRNAs) has been proven to be involved in the pathogenesis of coronary artery disease (CAD). However, it remains to be extensively explored. Thus, the present study aims to study expression patterns, biological functions, and diagnostic value of lncRNAs in CAD. METHODS Using microarray, we performed the transcriptome-wide lncRNA and mRNAs expression profile of peripheral blood mononuclear cells (PBMCs) of 93 CAD patients and 48 healthy controls. Gene Ontology (GO) and pathway analysis for differentially expressed mRNAs were used to investigate underlying biological associations of differentially expressed lncRNAs, and path-net was created to depict interactions of significant pathways. qRT-PCR was used to validate selected lncRNAs in 412 CAD patients and 295 healthy controls. Receiver operating characteristic (ROC) curve analysis was performed to evaluate whether lncRNAs could be used in the diagnosis of CAD patients. Finally, the functional significance of validated lncRNAs was determined in THP-1-derived macrophages. RESULTS We identified 1210 lncRNAs and 890 mRNAs differentially expressed from the expression profile and validated 7 lncRNAs. Two novel lncRNA biomarkers, ENST00000444488.1 and uc010yfd.1, together with CAD risk factors, had the better performance for discrimination of CAD patients from healthy controls, and ENST00000444488.1 could diagnose acute myocardial infarction (AMI) patients. The knockdown of 20 ENST00000444488.1, uc010yfd.1, ASO3973 and ENST00000602558.1 affected the expression of inflammation-related genes and their nearby genes in THP-1-derived macrophages, respectively. CONCLUSIONS We offered a transcriptome-wide overview of aberrantly expressed lncRNAs in CAD patients, and identified two novel lncRNA biomarkers for diagnosing CAD. Loss of validated lncRNAs regulated the expression of inflammation-related genes and their nearby genes.
Collapse
Affiliation(s)
- Lin Li
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Laiyuan Wang
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hongfan Li
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xikun Han
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shufeng Chen
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bin Yang
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zunsong Hu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Huijuan Zhu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Can Cai
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jichun Chen
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiangdong Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianfeng Huang
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Dongfeng Gu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
12
|
Nishikawa K, Kinjo AR. Mechanism of evolution by genetic assimilation : Equivalence and independence of genetic mutation and epigenetic modulation in phenotypic expression. Biophys Rev 2018; 10:667-676. [PMID: 29468522 DOI: 10.1007/s12551-018-0403-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
Conrad H. Waddington discovered the phenomenon of genetic assimilation through a series of experiments on fruit flies. In those experiments, artificially exerted environmental stress induced plastic phenotypic changes in the fruit flies, but after some generations, the same phenotypic variant started to appear without the environmental stress. Both the initial state (where the phenotypic changes were environmentally induced and plastic) and the final state (where the phenotypic changes were genetically fixed and constitutive) are experimental facts. However, it remains unclear how the environmentally induced phenotypic change in the first generation becomes genetically fixed in the central process of genetic assimilation itself. We have argued that the key to understanding the mechanism of genetic assimilation lies in epigenetics, and proposed the "cooperative model" in which the evolutionary process depends on both genetic and epigenetic factors. Evolutionary simulations based on the cooperative model reproduced the process of genetic assimilation. Detailed analysis of the trajectories has revealed genetic assimilation is a process in which epigenetically induced phenotypic changes are incrementally and statistically replaced with multiple minor genetic mutations through natural selection. In this scenario, epigenetic and genetic changes may be considered as mutually independent but equivalent in terms of their effects on phenotypic changes. This finding rejects the common (and confused) hypothesis that epigenetically induced phenotypic changes depend on genetic mutations. Furthermore, we argue that transgenerational epigenetic inheritance is not required for evolution by genetic assimilation.
Collapse
Affiliation(s)
- Ken Nishikawa
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|