1
|
Zhu Y, Porcar L, Ravula T, Batchu KC, Lavoie TL, Liu Y, Perez-Salas U. Unexpected asymmetric distribution of cholesterol and phospholipids in equilibrium model membranes. Biophys J 2024; 123:3923-3934. [PMID: 39390746 PMCID: PMC11617633 DOI: 10.1016/j.bpj.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/21/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Lipid compositional asymmetry across the leaflets of the plasma membrane is an ubiquitous feature in eukaryotic cells. How this asymmetry is maintained is thought to be primarily controlled by active transport of lipids between leaflets. This strategy is facilitated by the fact that long-tail phospholipids and sphingolipids diffuse through the lipid bilayer slowly-taking many hours or days. However, a lipid like cholesterol-which is the most abundant lipid in the plasma membrane of animal cells-has been harder to pinpoint in terms of its favored side. In this work we show that, when a saturated lipid is added to a mix of the unsaturated lipid palmitoyl-oleoyl-phosphatidylcholine (POPC) and cholesterol, both cholesterol and the long-tail phospholipids organize asymmetrically across the membrane's leaflets naturally. In these extruded unilamellar vesicles, most cholesterol as well as the saturated lipid-dipalmitoylphosphatidylcholine or sphingomyelin-segregated to the inner leaflet while POPC preferentially localized in the outer leaflet. This asymmetric arrangement generated a slight phospholipid number imbalance favoring the outer leaflet and thus opposite to where cholesterol and the saturated lipids preferentially partitioned. These results were obtained using magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with small-angle neutron scattering (SANS) using isotope labeling to differentiate lipid species. We suggest that sidedness in membranes can be driven by thermodynamic processes. In addition, our MAS NMR results show that the lower bound for cholesterol's flip-flop half-time at 45°C is 10 ms, which is at least two orders of magnitude slower than current MD simulations predict. This result stands in stark contrast to previous work that suggested that cholesterol's flip-flop half-time at 37°C has an upper bound of 10 ms.
Collapse
Affiliation(s)
- Yuli Zhu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Lionel Porcar
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Thirupathi Ravula
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishna C Batchu
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Tera L Lavoie
- Advanced Electron Microscopy, University of Chicago, Chicago, Illinois
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Ursula Perez-Salas
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Chavez T, Roberts EJ, Zwart PH, Hexemer A. A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering. J Appl Crystallogr 2022; 55:1277-1288. [PMID: 36249508 PMCID: PMC9533742 DOI: 10.1107/s1600576722007105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980.
Collapse
Affiliation(s)
- Tanny Chavez
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eric J. Roberts
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Petrus H. Zwart
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander Hexemer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
4
|
Abstract
Cell membranes - primarily composed of lipids, sterols, and proteins - form a dynamic interface between living cells and their environment. They act as a mechanical barrier around the cell while selectively facilitating material transport, signal transduction, and various other functions necessary for the cell viability. The complex functionality of cell membranes and the hierarchical motions and responses they exhibit demand a thorough understanding of the origin of different membrane dynamics and how they are influenced by molecular additives and environmental cues. These dynamic modes include single-molecule diffusion, thermal fluctuations, and large-scale membrane deformations, to name a few. This review highlights advances in investigating structure-driven dynamics associated with model cell membranes, with a particular focus on insights gained from neutron scattering and spectroscopy experiments. We discuss the uniqueness of neutron contrast variation and its remarkable potential in probing selective membrane structure and dynamics on spatial and temporal scales over which key biological functions occur. We also present a summary of current and future opportunities in synergistic combinations of neutron scattering with molecular dynamics (MD) simulations to gain further understanding of the molecular mechanisms underlying complex membrane functions.
Collapse
Affiliation(s)
- Sudipta Gupta
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Conn CE, de Campo L, Whitten AE, Garvey CJ, Krause-Heuer AM, van 't Hag L. Membrane Protein Structures in Lipid Bilayers; Small-Angle Neutron Scattering With Contrast-Matched Bicontinuous Cubic Phases. Front Chem 2021; 8:619470. [PMID: 33644002 PMCID: PMC7903247 DOI: 10.3389/fchem.2020.619470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023] Open
Abstract
This perspective describes advances in determining membrane protein structures in lipid bilayers using small-angle neutron scattering (SANS). Differentially labeled detergents with a homogeneous scattering length density facilitate contrast matching of detergent micelles; this has previously been used successfully to obtain the structures of membrane proteins. However, detergent micelles do not mimic the lipid bilayer environment of the cell membrane in vivo. Deuterated vesicles can be used to obtain the radius of gyration of membrane proteins, but protein-protein interference effects within the vesicles severely limits this method such that the protein structure cannot be modeled. We show herein that different membrane protein conformations can be distinguished within the lipid bilayer of the bicontinuous cubic phase using contrast-matching. Time-resolved studies performed using SANS illustrate the complex phase behavior in lyotropic liquid crystalline systems and emphasize the importance of this development. We believe that studying membrane protein structures and phase behavior in contrast-matched lipid bilayers will advance both biological and pharmaceutical applications of membrane-associated proteins, biosensors and food science.
Collapse
Affiliation(s)
- Charlotte E. Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Andrew E. Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Christopher J. Garvey
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Lund Institute for Advanced Neutron and X-Ray Science, Lund, Sweden
- Biolfim-Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Anwen M. Krause-Heuer
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Leonie van 't Hag
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Semeraro EF, Marx L, Frewein MPK, Pabst G. Increasing complexity in small-angle X-ray and neutron scattering experiments: from biological membrane mimics to live cells. SOFT MATTER 2021; 17:222-232. [PMID: 32104874 DOI: 10.1039/c9sm02352f] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small-angle X-ray and neutron scattering are well-established, non-invasive experimental techniques to interrogate global structural properties of biological membrane mimicking systems under physiologically relevant conditions. Recent developments, both in bottom-up sample preparation techniques for increasingly complex model systems, and in data analysis techniques have opened the path toward addressing long standing issues of biological membrane remodelling processes. These efforts also include emerging quantitative scattering studies on live cells, thus enabling a bridging of molecular to cellular length scales. Here, we review recent progress in devising compositional models for joint small-angle X-ray and neutron scattering studies on diverse membrane mimics - with a specific focus on membrane structural coupling to amphiphatic peptides and integral proteins - and live Escherichia coli. In particular, we outline the present state-of-the-art in small-angle scattering methods applied to complex membrane systems, highlighting how increasing system complexity must be followed by an advance in compositional modelling and data-analysis tools.
Collapse
Affiliation(s)
- Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria and Institut Laue-Langevin, 38000 Grenoble, France
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
7
|
Souza JCP, Macedo LJA, Hassan A, Sedenho GC, Modenez IA, Crespilho FN. In Situ
and
Operando
Techniques for Investigating Electron Transfer in Biological Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202001327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- João C. P. Souza
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
- Campus Rio Verde Goiano Federal Institute of Education, Science and Technology 75901-970 Rio Verde Goiás Brazil
| | - Lucyano J. A. Macedo
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Graziela C. Sedenho
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Iago A. Modenez
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| | - Frank N. Crespilho
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos São Paulo Brazil
| |
Collapse
|
8
|
Saumya KU, Kumar D, Kumar P, Giri R. Unlike dengue virus, the conserved 14–23 residues in N-terminal region of Zika virus capsid is not involved in lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183440. [DOI: 10.1016/j.bbamem.2020.183440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
|
9
|
Andrade S, Loureiro JA, Pereira MC. Green tea extract-biomembrane interaction study: The role of its two major components, (-)-epigallocatechin gallate and (-)-epigallocatechin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183476. [PMID: 32946887 DOI: 10.1016/j.bbamem.2020.183476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
The interaction of antioxidants with biological membranes is closely related with their efficacy to inhibit the lipid peroxidation, the cause of several pathologies including cancer, neurodegenerative and cardiovascular disorders. Despite being pointed as a promising antioxidant agent by some authors, the anti-lipid peroxidation of green tea extract (GTE) has not aroused consensus among the scientific community. Since the interaction of drugs with biological membranes plays a key role on their therapeutic activity, this study aims to evaluate the interaction of GTE with liposomes as in vitro biomembrane models composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine phospholipids in the absence and presence of cholesterol (CHOL) (15 mol%). The affinity of GTE and its main components (-)-epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) to the lipid bilayer, their membrane location as well as their effect on the membrane fluidity was investigated by diverse biophysical techniques. Derivative spectrophotometry results proved that GTE has high affinity to the membrane by establishing hydrophobic interactions with the non-polar region of phospholipids and electrostatic interactions with the polar phospholipid heads. Fluorescence and dynamic light scattering data confirm that GTE is located in both hydrophobic and hydrophilic regions of the lipid membrane, therefore affecting the structure of the biomembrane by increasing its fluidity. However, the increased stiffness and organization of the lipid bilayer caused by CHOL significantly affected the interaction of GTE with the membrane. Moreover, the obtained findings suggest a direct contribution of EGCG and EGC on the GTE-membrane interaction.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
10
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
11
|
Malanovic N, Marx L, Blondelle SE, Pabst G, Semeraro EF. Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183275. [PMID: 32173291 DOI: 10.1016/j.bbamem.2020.183275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The search for novel compounds to combat multi-resistant bacterial infections includes exploring the potency of antimicrobial peptides and derivatives thereof. Complementary to high-throughput screening techniques, biophysical and biochemical studies of the biological activity of these compounds enable deep insight, which can be exploited in designing antimicrobial peptides with improved efficacy. This approach requires the combination of several techniques to study the effect of such peptides on both bacterial cells and simple mimics of their cell envelope, such as lipid-only vesicles. These efforts carry the challenge of bridging results across techniques and sample systems, including the proper choice of membrane mimics. This review describes some important concepts toward the development of potent antimicrobial peptides and how they translate to frequently applied experimental techniques, along with an outline of the biophysics pertaining to the killing mechanism of antimicrobial peptides.
Collapse
Affiliation(s)
- Nermina Malanovic
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria.
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | | | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| | - Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, Graz, Austria
| |
Collapse
|
12
|
Pachler M, Kabelka I, Appavou MS, Lohner K, Vácha R, Pabst G. Magainin 2 and PGLa in Bacterial Membrane Mimics I: Peptide-Peptide and Lipid-Peptide Interactions. Biophys J 2019; 117:1858-1869. [PMID: 31703802 PMCID: PMC7031808 DOI: 10.1016/j.bpj.2019.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
We addressed the onset of synergistic activity of the two well-studied antimicrobial peptides magainin 2 (MG2a) and PGLa using lipid-only mimics of Gram-negative cytoplasmic membranes. Specifically, we coupled a joint analysis of small-angle x-ray and neutron scattering experiments on fully hydrated lipid vesicles in the presence of MG2a and L18W-PGLa to all-atom and coarse-grained molecular dynamics simulations. In agreement with previous studies, both peptides, as well as their equimolar mixture, were found to remain upon adsorption in a surface-aligned topology and to induce significant membrane perturbation, as evidenced by membrane thinning and hydrocarbon order parameter changes in the vicinity of the inserted peptide. These effects were particularly pronounced for the so-called synergistic mixture of 1:1 (mol/mol) L18W-PGLa/MG2a and cannot be accounted for by a linear combination of the membrane perturbations of two peptides individually. Our data are consistent with the formation of parallel heterodimers at concentrations below a synergistic increase of dye leakage from vesicles. Our simulations further show that the heterodimers interact via salt bridges and hydrophobic forces, which apparently makes them more stable than putatively formed antiparallel L18W-PGLa and MG2a homodimers. Moreover, dimerization of L18W-PGLa and MG2a leads to a relocation of the peptides within the lipid headgroup region as compared to the individual peptides. The early onset of dimerization of L18W-PGLa and MG2a at low peptide concentrations consequently appears to be key to their synergistic dye-releasing activity from lipid vesicles at high concentrations.
Collapse
Affiliation(s)
- Michael Pachler
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ivo Kabelka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Germany
| | - Karl Lohner
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Georg Pabst
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
13
|
Maktabi S, Schertzer JW, Chiarot PR. Dewetting-induced formation and mechanical properties of synthetic bacterial outer membrane models (GUVs) with controlled inner-leaflet lipid composition. SOFT MATTER 2019; 15:3938-3948. [PMID: 31011738 PMCID: PMC6647036 DOI: 10.1039/c9sm00223e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The double-membrane cellular envelope of Gram-negative bacteria enables them to endure harsh environments and represents a barrier to many clinically available antibiotics. The outer membrane (OM) is exposed to the environment and is the first point of contact involved in bacterial processes such as signaling, pathogenesis, and motility. As in the cytoplasmic membrane, the OM in Gram-negative bacteria has a phospholipid-rich inner leaflet and an outer leaflet that is predominantly composed of lipopolysaccharide (LPS). We report on a microfluidic technique for fabricating monodisperse asymmetric giant unilamellar vesicles (GUVs) possessing the Gram-negative bacterial OM lipid composition. Our continuous microfluidic fabrication technique generates 50-150 μm diameter water-in-oil-in-water double emulsions at high-throughput. The water-oil and oil-water interfaces facilitate the self-assembly of phospholipid and LPS molecules to create the inner and outer leaflets of the lipid bilayer, respectively. The double emulsions have ultrathin oil shells, which minimizes the amount of residual organic solvent that remains trapped between the leaflets of the GUV membrane. An extraction process by ethanol and micropipette aspiration of the ultrathin oil shells triggers an adhesive interaction between the two lipid monolayers assembled on the water-oil and oil-water interfaces (i.e., dewetting transition), forcing them to contact and form a lipid bilayer membrane. The effect of different inner-leaflet lipid compositions on the emulsion/vesicle stability and the dewetting transition is investigated. We also report on the values for bending and area expansion moduli of synthetic asymmetric model membranes with lipid composition/architecture that is physiologically relevant to the OM in Pseudomonas aeruginosa bacteria.
Collapse
Affiliation(s)
- Sepehr Maktabi
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA.
| | | | | |
Collapse
|
14
|
Frewein MPK, Rumetshofer M, Pabst G. Global small-angle scattering data analysis of inverted hexagonal phases. J Appl Crystallogr 2019; 52:403-414. [PMID: 30996718 PMCID: PMC6448687 DOI: 10.1107/s1600576719002760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/23/2019] [Indexed: 11/29/2022] Open
Abstract
A global analysis model has been developed for randomly oriented, fully hydrated, inverted hexagonal (HII) phases formed by many amphiphiles in aqueous solution, including membrane lipids. The model is based on a structure factor for hexagonally packed rods and a compositional model for the scattering length density, enabling also the analysis of positionally weakly correlated HII phases. Bayesian probability theory was used for optimization of the adjustable parameters, which allows parameter correlations to be retrieved in much more detail than standard analysis techniques and thereby enables a realistic error analysis. The model was applied to different phosphatidylethanolamines, including previously unreported HII data for diC14:0 and diC16:1 phosphatid-yl-ethanolamine. The extracted structural features include intrinsic lipid curvature, hydrocarbon chain length and area per lipid at the position of the neutral plane.
Collapse
Affiliation(s)
- Moritz P. K. Frewein
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Michael Rumetshofer
- Graz University of Technology, Institute of Theoretical Physics and Computational Physics, NAWI Graz, 8010 Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|