1
|
Pinto M, Saliminasab M, Harris A, Lazaratos M, Bondar AN, Ladizhansky V, Brown LS. The retinal chromophore environment in an inward light-driven proton pump studied by solid-state NMR and hydrogen-bond network analysis. Phys Chem Chem Phys 2024; 26:24090-24108. [PMID: 39248601 DOI: 10.1039/d4cp02611j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Inward proton pumping is a relatively new function for microbial rhodopsins, retinal-binding light-driven membrane proteins. So far, it has been demonstrated for two unrelated subgroups of microbial rhodopsins, xenorhodopsins and schizorhodopsins. A number of recent studies suggest unique retinal-protein interactions as being responsible for the reversed direction of proton transport in the latter group. Here, we use solid-state NMR to analyze the retinal chromophore environment and configuration in an inward proton-pumping Antarctic schizorhodopsin. Using fully 13C-labeled retinal, we have assigned chemical shifts for every carbon atom and, assisted by structure modelling and molecular dynamics simulations, made a comparison with well-studied outward proton pumps, identifying locations of the unique protein-chromophore interactions for this functional subclass of microbial rhodopsins. Both the NMR results and molecular dynamics simulations point to the distinctive polar environment in the proximal part of the retinal, which may result in a hydration pattern dramatically different from that of the outward proton pumps, causing the reversed proton transport.
Collapse
Affiliation(s)
- Marie Pinto
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Maryam Saliminasab
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Michalis Lazaratos
- Freie Universität Berlin, Physics Department, Theoretical Molecular Biophysics Group, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele 077125, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), 52428 Jülich, Germany
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
2
|
Furutani Y, Yang CS. Ion-transporting mechanism in microbial rhodopsins: Mini-review relating to the session 5 at the 19th International Conference on Retinal Proteins. Biophys Physicobiol 2023; 20:e201005. [PMID: 38362333 PMCID: PMC10865854 DOI: 10.2142/biophysico.bppb-v20.s005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Shimono K, Dencher NA. Recent advances in signaling and activation mechanism in microbial rhodopsins: Report for the session 6 at the 19 th International Conference on Retinal Proteins. Biophys Physicobiol 2023; 20:e201009. [PMID: 38362314 PMCID: PMC10865883 DOI: 10.2142/biophysico.bppb-v20.s009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Affiliation(s)
- Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Sojo Universtiy, Kumamoto 860-0082, Japan
| | - Norbert A. Dencher
- Department Chemistry, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
4
|
Arikawa S, Sugimoto T, Okitsu T, Wada A, Katayama K, Kandori H, Kawamura I. Solid-state NMR for the characterization of retinal chromophore and Schiff base in TAT rhodopsin embedded in membranes under weakly acidic conditions. Biophys Physicobiol 2023; 20:e201017. [PMID: 38362323 PMCID: PMC10865839 DOI: 10.2142/biophysico.bppb-v20.s017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
TAT rhodopsin extracted from the marine bacterium SAR11 HIMB114 has a characteristic Thr-Ala-Thr motif and contains both protonated and deprotonated states of Schiff base at physiological pH conditions due to the low pKa. Here, using solid-state NMR spectroscopy, we investigated the 13C and 15N NMR signals of retinal in only the protonated state of TAT in the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho (1'-rac-glycerol) (POPE/POPG) membrane at weakly acidic conditions. In the 13C NMR spectrum of 13C retinal-labeled TAT rhodopsin, the isolated 14-13C signals of 13-trans/15-anti and 13-cis/15-syn isomers were observed at a ratio of 7:3. 15N retinal protonated Schiff base (RPSB) had a significantly higher magnetic field resonance at 160 ppm. In 15N RPSB/λmax analysis, the plot of TAT largely deviated from the trend based on the retinylidene-halide model compounds and microbial rhodopsins. Our findings indicate that the RPSB of TAT forms a very weak interaction with the counterion.
Collapse
Affiliation(s)
- Sui Arikawa
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
5
|
Suzuki S, Kumagai S, Nagashima T, Yamazaki T, Okitsu T, Wada A, Naito A, Katayama K, Inoue K, Kandori H, Kawamura I. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy. Biophys Chem 2023; 296:106991. [PMID: 36905840 DOI: 10.1016/j.bpc.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Heliorhodopsin (HeR) is a seven-helical transmembrane protein with a retinal chromophore that corresponds to a new rhodopsin family. HeR from the archaebacterium Thermoplasmatales archaeon (TaHeR) exhibits unique features, such as the inverted protein orientation in the membrane compared to other rhodopsins and a long photocycle. Here, we used solid-state nuclear magnetic resonance (NMR) spectroscopy to investigate the 13C and 15N NMR signals of the retinal chromophore and protonated Schiff base (RPSB) in TaHeR embedded in POPE/POPG membrane. Although the 14- and 20-13C retinal signals indicated 13-trans/15-anti (all-trans) configurations, the 20-13C chemical shift value was different from that of other microbial rhodopsins, indicating weakly steric hinderance between Phe203 and the C20 methyl group. 15N RPSB/λmax plot deviated from the linear correlation based on retinylidene-halide model compounds. Furthermore, 15N chemical shift anisotropy (CSA) suggested that Ser112 and Ser234 polar residues distinguish the electronic environment tendencies of RPSB from those of other microbial rhodopsins. Our NMR results revealed that the retinal chromophore and the RPSB in TaHeR exhibit unique electronic environments.
Collapse
Affiliation(s)
- Shibuki Suzuki
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Sari Kumagai
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
6
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
7
|
Shigeta A, Otani Y, Miyasa R, Makino Y, Kawamura I, Okitsu T, Wada A, Naito A. Photoreaction Pathways of Bacteriorhodopsin and Its D96N Mutant as Revealed by in Situ Photoirradiation Solid-State NMR. MEMBRANES 2022; 12:membranes12030279. [PMID: 35323754 PMCID: PMC8949607 DOI: 10.3390/membranes12030279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022]
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump that transitions between different states during the photocycle, such as all-trans (AT; BR568) and 13-cis, 15-syn (CS; BR548) state and K, L, M1, M2, N, and O intermediates. In this study, we used in situ photoirradiation 13C solid-state NMR to observe a variety of photo-intermediates and photoreaction pathways in [20-13C]retinal-WT-BR and its mutant [20-13C, 14-13C]retinal-D96N-BR. In WT-BR, the CS state converted to the CS* intermediate under photoirradiation with green light at −20 °C and consequently converted to the AT state in the dark. The AT state converted to the N intermediate under irradiation with green light. In D96N-BR, the CS state was converted to the CS* intermediate at −30 °C and consequently converted to the AT state. Simultaneously, the AT state converted to the M and L intermediates under green light illumination at −30 °C and subsequently converted to the AT state in the dark. The M intermediate was directly excited to the AT state by UV light illumination. We demonstrated that short-lived photo-intermediates could be observed in a stationary state using in situ photoirradiation solid-state NMR spectroscopy for WT-BR and D96N-BR, enabling insight into the light-driven proton pump activity of BR.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yuto Otani
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Ryota Miyasa
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan; (T.O.); (A.W.)
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (A.S.); (Y.O.); (R.M.); (Y.M.)
- Correspondence: (I.K.); (A.N.)
| |
Collapse
|
8
|
Abstract
Microbial rhodopsins represent the most abundant phototrophic systems known today. A similar molecular architecture with seven transmembrane helices and a retinal cofactor linked to a lysine in helix 7 enables a wide range of functions including ion pumping, light-controlled ion channel gating, or sensing. Deciphering their molecular mechanisms therefore requires a combined consideration of structural, functional, and spectroscopic data in order to identify key factors determining their function. Important insight can be gained by solid-state NMR spectroscopy by which the large homo-oligomeric rhodopsin complexes can be studied directly within lipid bilayers. This chapter describes the methodological background and the necessary sample preparation requirements for the study of photointermediates, for the analysis of protonation states, H-bonding and chromophore conformations, for 3D structure determination, and for probing oligomer interfaces of microbial rhodopsins. The use of data extracted from these NMR experiments is discussed in the context of complementary biophysical methods.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Mei G, Cavini CM, Mamaeva N, Wang P, DeGrip WJ, Rothschild KJ. Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors. Photochem Photobiol 2021; 97:1001-1015. [PMID: 33817800 PMCID: PMC8596844 DOI: 10.1111/php.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
Opsin-based transmembrane voltage sensors (OTVSs) are membrane proteins increasingly used in optogenetic applications to measure voltage changes across cellular membranes. In order to better understand the photophysical properties of OTVSs, we used a combination of UV-Vis absorption, fluorescence and FT-Raman spectroscopy to characterize QuasAr2 and NovArch, two closely related mutants derived from the proton pump archaerhodopsin-3 (AR3). We find both QuasAr2 and NovArch can be optically cycled repeatedly between O-like and M-like states using 5-min exposure to red (660 nm) and near-UV (405 nm) light. Longer red-light exposure resulted in the formation of a long-lived photoproduct similar to pink membrane, previously found to be a photoproduct of the BR O intermediate with a 9-cis retinylidene chromophore configuration. However, unlike QuasAr2 whose O-like state is stable in the dark, NovArch exhibits an O-like state which slowly partially decays in the dark to a stable M-like form with a deprotonated Schiff base and a 13-cis,15-anti retinylidene chromophore configuration. These results reveal a previously unknown complexity in the photochemistry of OTVSs including the ability to optically switch between different long-lived states. The possible molecular basis of these newly discovered properties along with potential optogenetic and biotechnological applications are discussed.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Cesar M. Cavini
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Natalia Mamaeva
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | | | - Willem J. DeGrip
- Department of Biophysical Organic ChemistryLeiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Department of BiochemistryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Kenneth J. Rothschild
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| |
Collapse
|
10
|
Kawamura I, Seki H, Tajima S, Makino Y, Shigeta A, Okitsu T, Wada A, Naito A, Sudo Y. Structure of a retinal chromophore of dark-adapted middle rhodopsin as studied by solid-state nuclear magnetic resonance spectroscopy. Biophys Physicobiol 2021; 18:177-185. [PMID: 34434690 PMCID: PMC8354847 DOI: 10.2142/biophysico.bppb-v18.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
Middle rhodopsin (MR) found from the archaeon Haloquadratum walsbyi is evolutionarily located between two different types of rhodopsins, bacteriorhodopsin (BR) and sensory rhodopsin II (SRII). Some isomers of the chromophore retinal and the photochemical reaction of MR are markedly different from those of BR and SRII. In this study, to obtain the structural information regarding its active center (i.e., retinal), we subjected MR embedded in lipid bilayers to solid-state magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The analysis of the isotropic 13C chemical shifts of the retinal chromophore revealed the presence of three types of retinal configurations of dark-adapted MR: (13-trans, 15-anti (all-trans)), (13-cis, 15-syn), and 11-cis isomers. The higher field resonance of the 20-C methyl carbon in the all-trans retinal suggested that Trp182 in MR has an orientation that is different from that in other microbial rhodopsins, owing to the changes in steric hindrance associated with the 20-C methyl group in retinal. 13Cζ signals of Tyr185 in MR for all-trans and 13-cis, 15-syn isomers were discretely observed, representing the difference in the hydrogen bond strength of Tyr185. Further, 15N NMR analysis of the protonated Schiff base corresponding to the all-trans and 13-cis, 15-syn isomers in MR showed a strong electrostatic interaction with the counter ion. Therefore, the resulting structural information exhibited the property of stable retinal conformations of dark-adapted MR.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hayato Seki
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Seiya Tajima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Present address: Graduate School of Medicine, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Paululat T, Rabe M, Berdnikova DV. Modification of an NMR probe for monitoring of photoreactions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106990. [PMID: 33932912 DOI: 10.1016/j.jmr.2021.106990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We describe a modified NMR probe for the in situ irradiation studies of photochemical reactions in solution-state NMR. To build up this setup, we designed an irradiation insert that brings eight light-emitting diodes (LEDs) into the NMR probe in the immediate proximity of the sample. The inserts with LEDs of different wavelengths are easily exchangeable within minutes. A tunable power supply allows to adjust the light intensity to optimize the irradiation conditions.
Collapse
Affiliation(s)
- Thomas Paululat
- Dr. Daria V. Berdnikova, Universität Siegen, Organische Chemie II, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | - Markus Rabe
- Universität Siegen, Werkstatt AR, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| | - Daria V Berdnikova
- Dr. Daria V. Berdnikova, Universität Siegen, Organische Chemie II, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| |
Collapse
|
12
|
2019-A year in Biophysical Reviews. Biophys Rev 2019; 11:833-839. [PMID: 31741173 DOI: 10.1007/s12551-019-00607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
|