1
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Jeong S, Singh H, Jung JH, Jung KW, Ryu S, Lim S. Comparative genomics of Deinococcus radiodurans: unveiling genetic discrepancies between ATCC 13939K and BAA-816 strains. Front Microbiol 2024; 15:1410024. [PMID: 38962131 PMCID: PMC11219805 DOI: 10.3389/fmicb.2024.1410024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
The Deinococcus genus is renowned for its remarkable resilience against environmental stresses, including ionizing radiation, desiccation, and oxidative damage. This resilience is attributed to its sophisticated DNA repair mechanisms and robust defense systems, enabling it to recover from extensive damage and thrive under extreme conditions. Central to Deinococcus research, the D. radiodurans strains ATCC BAA-816 and ATCC 13939 facilitate extensive studies into this remarkably resilient genus. This study focused on delineating genetic discrepancies between these strains by sequencing our laboratory's ATCC 13939 specimen (ATCC 13939K) and juxtaposing it with ATCC BAA-816. We uncovered 436 DNA sequence differences within ATCC 13939K, including 100 single nucleotide variations, 278 insertions, and 58 deletions, which could induce frameshifts altering protein-coding genes. Gene annotation revisions accounting for gene fusions and the reconciliation of gene lengths uncovered novel protein-coding genes and refined the functional categorizations of established ones. Additionally, the analysis pointed out genome structural variations due to insertion sequence (IS) elements, underscoring the D. radiodurans genome's plasticity. Notably, ATCC 13939K exhibited a loss of six ISDra2 elements relative to BAA-816, restoring genes fragmented by ISDra2, such as those encoding for α/β hydrolase and serine protease, and revealing new open reading frames, including genes imperative for acetoin decomposition. This comparative genomic study offers vital insights into the metabolic capabilities and resilience strategies of D. radiodurans.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
3
|
McCaughey C, Trebino MA, McAtamney A, Isenberg RY, Mandel MJ, Yildiz FH, Sanchez LM. A Label-Free Approach for Relative Spatial Quantitation of c-di-GMP in Microbial Biofilms. Anal Chem 2024; 96:8308-8316. [PMID: 38752543 PMCID: PMC11140670 DOI: 10.1021/acs.analchem.3c04687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Microbial biofilms represent an important lifestyle for bacteria and are dynamic three-dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable toward understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest from a single sample.
Collapse
Affiliation(s)
- Catherine
S. McCaughey
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Michael A. Trebino
- Department
of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Allyson McAtamney
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Ruth Y. Isenberg
- Department
of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Microbiology
Doctoral Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark J. Mandel
- Department
of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Microbiology
Doctoral Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Fitnat H. Yildiz
- Department
of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Laura M. Sanchez
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
4
|
Lee JH, Oh HM. Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322. J Microbiol 2024; 62:297-314. [PMID: 38662311 DOI: 10.1007/s12275-024-00125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
Collapse
Affiliation(s)
- Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, 07804, Republic of Korea
| | - Hyun-Myung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan, 48547, Republic of Korea.
| |
Collapse
|
5
|
Sakai K, Kishida K, Matsumoto S, Nagata Y, Tsuda M, Ohtsubo Y. Three distinct metabolic phases of polychlorinated biphenyls/biphenyl degrader Acidovorax sp. KKS102 in nutrient broth. Biosci Biotechnol Biochem 2024; 88:305-315. [PMID: 38192044 DOI: 10.1093/bbb/zbad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Acidovorax sp. KKS102 is a beta-proteobacterium capable of degrading polychlorinated biphenyls (PCBs). In this study, we examined its growth in liquid nutrient broth supplemented with different carbon sources. KKS102 had at least 3 distinct metabolic phases designated as metabolic phases 1-3, with phase 2 having 2 sub-phases. For example, succinate, fumarate, and glutamate, known to repress the PCB/biphenyl catabolic operon in KKS102, were utilized in phase 1, while acetate, arabinose, and glycerol in phase 2, and glucose and mannose in phase 3. We also showed that the BphQ response regulator mediating catabolite control in KKS102, whose expression level increased moderately through the growth, plays important roles in carbon metabolism in phases 2 and 3. Our study elucidates the hierarchical growth of KKS102 in nutrient-rich media. This insight is crucial for studies exploiting microbial biodegradation capabilities and advancing studies for catabolite regulation mechanisms.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoshi Matsumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Li K, Xia J, Liu CG, Zhao XQ, Bai FW. Intracellular accumulation of c-di-GMP and its regulation on self-flocculation of the bacterial cells of Zymomonas mobilis. Biotechnol Bioeng 2023; 120:3234-3243. [PMID: 37526330 DOI: 10.1002/bit.28513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Zymomonas mobilis is an emerging chassis for being engineered to produce bulk products due to its unique glycolysis through the Entner-Doudoroff pathway with less ATP produced for lower biomass accumulation and higher product yield. When self-flocculated, the bacterial cells are more productive, since they can self-immobilize within bioreactors for high density, and are more tolerant to stresses for higher product titers, but this morphology needs to be controlled properly to avoid internal mass transfer limitation associated with their strong self-flocculation. Herewith we explored the regulation of cyclic diguanosine monophosphate (c-di-GMP) on self-flocculation of the bacterial cells through activating cellulose biosynthesis. While ZMO1365 and ZMO0919 with GGDEF domains for diguanylate cyclase activity catalyze c-di-GMP biosynthesis, ZMO1487 with an EAL domain for phosphodiesterase activity catalyzes c-di-GMP degradation, but ZMO1055 and ZMO0401 contain the dual domains with phosphodiesterase activity predominated. Since c-di-GMP is synthesized from GTP, the intracellular accumulation of this signal molecule through deactivating phosphodiesterase activity is preferred for activating cellulose biosynthesis to flocculate the bacterial cells, because such a strategy exerts less perturbance on intracellular processes regulated by GTP. These discoveries are significant for not only engineering unicellular Z. mobilis strains with the self-flocculating morphology to boost production but also understanding mechanism underlying c-di-GMP biosynthesis and degradation in the bacterium.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
McCaughey CS, Trebino MA, McAtamney A, Isenberg R, Mandel MJ, Yildiz FH, Sanchez LM. A label-free approach for relative spatial quantitation of c-di-GMP in microbial biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561783. [PMID: 37873360 PMCID: PMC10592747 DOI: 10.1101/2023.10.10.561783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Microbial biofilms represent an important lifestyle for bacteria and are dynamic three dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable towards understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest in a single experiment.
Collapse
Affiliation(s)
- Catherine S McCaughey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Michael A Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Allyson McAtamney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Ruth Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Current Address: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
8
|
Liu F, Wang F, Yuan Y, Li X, Zhong X, Yang M. Quorum sensing signal synthases enhance Vibrio parahaemolyticus swarming motility. Mol Microbiol 2023; 120:241-257. [PMID: 37330634 DOI: 10.1111/mmi.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Vibrio parahaemolyticus is a significant food-borne pathogen that is found in diverse aquatic habitats. Quorum sensing (QS), a signaling system for cell-cell communication, plays an important role in V. parahaemolyticus persistence. We characterized the function of three V. parahaemolyticus QS signal synthases, CqsAvp , LuxMvp , and LuxSvp , and show that they are essential to activate QS and regulate swarming. We found that CqsAvp , LuxMvp , and LuxSvp activate a QS bioluminescence reporter through OpaR. However, V. parahaemolyticus exhibits swarming defects in the absence of CqsAvp , LuxMvp , and LuxSvp , but not OpaR. The swarming defect of this synthase mutant (termed Δ3AI) was recovered by overexpressing either LuxOvp D47A , a mimic of dephosphorylated LuxOvp mutant, or the scrABC operon. CqsAvp , LuxMvp , and LuxSvp inhibit lateral flagellar (laf) gene expression by inhibiting the phosphorylation of LuxOvp and the expression of scrABC. Phosphorylated LuxOvp enhances laf gene expression in a mechanism that involves modulating c-di-GMP levels. However, enhancing swarming requires phosphorylated and dephosphorylated LuxOvp which is regulated by the QS signals that are synthesized by CqsAvp , LuxMvp , and LuxSvp . The data presented here suggest an important strategy of swarming regulation by the integration of QS and c-di-GMP signaling pathways in V. parahaemolyticus.
Collapse
Affiliation(s)
- Fuwen Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Fei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Yixuan Yuan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xiaoran Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xiaojun Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
9
|
Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, Badía J, Baldomá L, Pérez-Mendoza D, Sanjuán J. Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli. BIOLOGY 2022; 12:44. [PMID: 36671740 PMCID: PMC9855851 DOI: 10.3390/biology12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Extracellular matrix components of bacterial biofilms include biopolymers such as polysaccharides, nucleic acids and proteins. Similar to polysaccharides, the secretion of adhesins and other matrix proteins can be regulated by the second messenger cyclic diguanylate (cdG). We have performed quantitative proteomics to determine the extracellular protein contents of a Rhizobium etli strain expressing high cdG intracellular levels. cdG promoted the exportation of proteins that likely participate in adhesion and biofilm formation: the rhizobial adhesion protein RapA and two previously undescribed likely adhesins, along with flagellins. Unexpectedly, cdG also promoted the selective exportation of cytoplasmic proteins. Nearly 50% of these cytoplasmic proteins have been previously described as moonlighting or candidate moonlighting proteins in other organisms, often found extracellularly. Western blot assays confirmed cdG-promoted export of two of these cytoplasmic proteins, the translation elongation factor (EF-Tu) and glyceraldehyde 3-phosphate dehydrogenase (Gap). Transmission Electron Microscopy immunolabeling located the Gap protein in the cytoplasm but was also associated with cell membranes and extracellularly, indicative of an active process of exportation that would be enhanced by cdG. We also obtained evidence that cdG increases the number of extracellular Gap proteoforms, suggesting a link between cdG, the post-translational modification and the export of cytoplasmic proteins.
Collapse
Affiliation(s)
- María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Natalia Díaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefa Badía
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
| | - Laura Baldomá
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
10
|
Lu Z, Fu Y, Zhou X, Du H, Chen Q. Cyclic dinucleotides mediate bacterial immunity by dinucleotide cyclase in Vibrio. Front Microbiol 2022; 13:1065945. [PMID: 36619988 PMCID: PMC9813507 DOI: 10.3389/fmicb.2022.1065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and synthesizes the second messenger, cGAMP, thus activating the adaptor protein stimulator of interferon genes (STING) and initiating the innate immune responses against microbial infections. cGAS-STING pathway has been crucially implicated in autoimmune diseases, cellular senescence, and cancer immunotherapy, while the cGAS-like receptors in bacteria can protect it against viral infections. Dinucleotide cyclase in Vibrio (DncV) is a dinucleotide cyclase originally identified in Vibrio cholerae. The synthesis of cyclic nucleotides by DncV, including c-di-GMP, c-di-AMP, and cGAMP mediates bacterial colonization, cell membrane formation, and virulence. DncV is a structural and functional homolog of the mammalian cytoplasmic DNA sensor, cGAS, implicating cGAS-STING signaling cascades may have originated in the bacterial immune system. Herein, we summarize the roles of DncV in bacterial immunity, which are expected to provide insights into the evolution of cGAS-STING signaling.
Collapse
|
11
|
Böhm C, Gourinchas G, Zweytick S, Hujdur E, Reiter M, Trstenjak S, Sensen CW, Winkler A. Characterisation of sequence-structure-function space in sensor-effector integrators of phytochrome-regulated diguanylate cyclases. Photochem Photobiol Sci 2022; 21:1761-1779. [PMID: 35788917 PMCID: PMC9587094 DOI: 10.1007/s43630-022-00255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]
Abstract
Understanding the relationship between protein sequence, structure and function is one of the fundamental challenges in biochemistry. A direct correlation, however, is often not trivial since protein dynamics also play an important functional role-especially in signal transduction processes. In a subfamily of bacterial light sensors, phytochrome-activated diguanylate cyclases (PadCs), a characteristic coiled-coil linker element connects photoreceptor and output module, playing an essential role in signal integration. Combining phylogenetic analyses with biochemical characterisations, we were able to show that length and composition of this linker determine sensor-effector function and as such are under considerable evolutionary pressure. The linker length, together with the upstream PHY-specific domain, influences the dynamic range of effector activation and can even cause light-induced enzyme inhibition. We demonstrate phylogenetic clustering according to linker length, and the development of new linker lengths as well as new protein function within linker families. The biochemical characterisation of PadC homologs revealed that the functional coupling of PHY dimer interface and linker element defines signal integration and regulation of output functionality. A small subfamily of PadCs, characterised by a linker length breaking the coiled-coil pattern, shows a markedly different behaviour from other homologs. The effect of the central helical spine on PadC function highlights its essential role in signal integration as well as direct regulation of diguanylate cyclase activity. Appreciation of sensor-effector linkers as integrator elements and their coevolution with sensory modules is a further step towards the use of functionally diverse homologs as building blocks for rationally designed optogenetic tools.
Collapse
Affiliation(s)
- Cornelia Böhm
- Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France
| | - Sophie Zweytick
- Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria
| | - Elvira Hujdur
- Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria
| | - Martina Reiter
- Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria
| | - Sara Trstenjak
- Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria
| | - Christoph Wilhelm Sensen
- BioTechMed-Graz, 8010, Graz, Austria
- Hungarian Centre of Excellence for Molecular Medicine, Római körút 21, 6723, Szeged, Hungary
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
12
|
Pérez-Mendoza D, Romero-Jiménez L, Rodríguez-Carvajal MÁ, Lorite MJ, Muñoz S, Olmedilla A, Sanjuán J. The Role of Two Linear β-Glucans Activated by c-di-GMP in Rhizobium etli CFN42. BIOLOGY 2022; 11:biology11091364. [PMID: 36138843 PMCID: PMC9495663 DOI: 10.3390/biology11091364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Bacterial exopolysaccharides (EPS) are secreted biopolymers with often critical roles in bacterial physiology and ecology. In addition to their biological role, there is increasing interest for EPS in various industrial sectors. β-glucans are among the most important ones including cellulose as the most abundant organic polymer on earth, but also newcomers, such as the bacterial Mixed Linkage β-Glucan (MLG), displaying a unique repeating unit suggestive of biotechnological potential. In this work we describe Rhizobium etli as the first bacterium reported to be able to produce these two linear β-glucans cellulose and MLG. Rhizobium etli is an agronomic relevant rhizobacteria able to perform Biological Nitrogen Fixation (BNF) in a symbiotic association with common bean plants. The production and regulation of cellulose and MLG by Rhizobium etli CFN42 is discussed and their impact on its free-living and symbiotic lifestyles evaluated. Abstract Bacterial exopolysaccharides (EPS) have been implicated in a variety of functions that assist in bacterial survival, colonization, and host–microbe interactions. Among them, bacterial linear β-glucans are polysaccharides formed by D-glucose units linked by β-glycosidic bonds, which include curdlan, cellulose, and the new described Mixed Linkage β-Glucan (MLG). Bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a universal bacterial second messenger that usually promote EPS production. Here, we report Rhizobium etli as the first bacterium capable of producing cellulose and MLG. Significant amounts of these two β-glucans are not produced under free-living laboratory conditions, but their production is triggered upon elevation of intracellular c-di-GMP levels, both contributing to Congo red (CR+) and Calcofluor (CF+) phenotypes. Cellulose turned out to be more relevant for free-living phenotypes promoting flocculation and biofilm formation under high c-di-GMP conditions. None of these two EPS are essential for attachment to roots of Phaseolus vulgaris, neither for nodulation nor for symbiotic nitrogen fixation. However, both β-glucans separately contribute to the fitness of interaction between R. etli and its host. Overproduction of these β-glucans, particularly cellulose, appears detrimental for symbiosis. This indicates that their activation by c-di-GMP must be strictly regulated in time and space and should be controlled by different, yet unknown, regulatory pathways.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Correspondence: (D.P.-M.); (J.S.); Tel.: +34-958-526-522 (D.P.-M.); +34-958-526-552 (J.S.)
| | - Lorena Romero-Jiménez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | | | - María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Socorro Muñoz
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Adela Olmedilla
- Department of Stress, Development and Signaling in Plants, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Correspondence: (D.P.-M.); (J.S.); Tel.: +34-958-526-522 (D.P.-M.); +34-958-526-552 (J.S.)
| |
Collapse
|
13
|
Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence. Appl Environ Microbiol 2022; 88:e0223921. [PMID: 35108083 DOI: 10.1128/aem.02239-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a significant food-borne pathogen that causes economic and public health problems worldwide and has the high capacity to adapt to diverse environments and hosts. The second messenger cyclic diguanylate monophosphate (c-di-GMP) allows bacteria to shift from a planktonic form to a communal multicellular lifestyle and plays an important role in bacterial survival and transmission. Here we characterized single-domain c-di-GMP synthetases in V. parahaemolyticus and identified a novel GGEEF domain-containing protein designated GefA that modulates bacterial swarming motility, biofilm formation, and virulence. GefA inhibits swarming motility by regulating the expression of lateral flagella, while it enhances biofilm formation by controlling exopolysaccharide biosynthesis. Under high-c-di-GMP conditions caused by scrABC knock-out, we found that GefA is bifunctional, as it has no effect on swarming motility but retains the ability to regulate biofilm formation. Subsequent studies suggested that GefA regulates the expression of type III secretion system 1 (T3SS1), which is an important virulence factor in V. parahaemolyticus. Here, we also revealed that the flagella participate in the infection of V. parahaemolyticus. We found that both the T3SS1 and flagella contribute to the GefA-mediated virulence of V. parahaemolyticus in the zebrafish model. Our results expand the knowledge of the V. parahaemolyticus c-di-GMP synthetases and their roles in social behaviors and pathogenicity. Importance The c-di-GMP metabolic enzymes constitute one of the largest clusters of potential orthologues in V. parahaemolyticus. However, the specific roles that these individual c-di-GMP metabolic enzymes play are largely unknown. Here, we identified a GGEEF domain-containing protein designated GefA that regulates bacterial behaviors and virulence. We also demonstrated that flagella participate in the infection of this bacterium, through which GefA regulates the bacterial virulence. To our knowledge, the roles that c-di-GMP and flagella play in V. parahaemolyticus virulence have never been revealed before. Our findings contribute to a better understanding of the function of c-di-GMP and its synthetases in V. parahaemolyticus.
Collapse
|
14
|
Lee CK, Schmidt WC, Webster SS, Chen JW, O'Toole GA, Wong GCL. Broadcasting of amplitude- and frequency-modulated c-di-GMP signals facilitates cooperative surface commitment in bacterial lineages. Proc Natl Acad Sci U S A 2022; 119:e2112226119. [PMID: 35064082 PMCID: PMC8795499 DOI: 10.1073/pnas.2112226119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Work on surface sensing in bacterial biofilms has focused on how cells transduce sensory input into cyclic diguanylate (c-di-GMP) signaling, low and high levels of which generally correlate with high-motility planktonic cells and low-motility biofilm cells, respectively. Using Granger causal inference methods, however, we find that single-cell c-di-GMP increases are not sufficient to imply surface commitment. Tracking entire lineages of cells from the progenitor cell onward reveals that c-di-GMP levels can exhibit increases but also undergo oscillations that can propagate across 10 to 20 generations, thereby encoding more complex instructions for community behavior. Principal component and factor analysis of lineage c-di-GMP data shows that surface commitment behavior correlates with three statistically independent composite features, which roughly correspond to mean c-di-GMP levels, c-di-GMP oscillation period, and surface motility. Surface commitment in young biofilms does not correlate to c-di-GMP increases alone but also to the emergence of high-frequency and small-amplitude modulation of elevated c-di-GMP signal along a lineage of cells. Using this framework, we dissect how increasing or decreasing signal transduction from wild-type levels, by varying the interaction strength between PilO, a component of a principal surface sensing appendage system, and SadC, a key hub diguanylate cyclase that synthesizes c-di-GMP, impacts frequency and amplitude modulation of c-di-GMP signals and cooperative surface commitment.
Collapse
Affiliation(s)
- Calvin K Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William C Schmidt
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Shanice S Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jonathan W Chen
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
15
|
Spore-Associated Proteins Involved in c-di-GMP Synthesis and Degradation of Bacillus anthracis. J Bacteriol 2021; 203:e0013521. [PMID: 34096779 DOI: 10.1128/jb.00135-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bis-(3'-5')-cyclic-dimeric GMP (c-di-GMP) is an important bacterial regulatory signaling molecule affecting biofilm formation, toxin production, motility, and virulence. The genome of Bacillus anthracis, the causative agent of anthrax, is predicted to encode ten putative GGDEF/EAL/HD-GYP-domain containing proteins. Heterologous expression in Bacillus subtilis hosts indicated that there are five active GGDEF domain-containing proteins and four active EAL or HD-GYP domain-containing proteins. Using an mCherry gene fusion-Western blotting approach, the expression of the c-di-GMP-associated proteins was observed throughout the in vitro life cycle. Of the six c-di-GMP-associated proteins found to be present in sporulating cells, four (CdgA, CdgB, CdgD, and CdgG) contain active GGDEF domains. The six proteins expressed in sporulating cells are retained in spores in a CotE-independent manner and thus are not likely to be localized to the exosporium layer of the spores. Individual deletion mutations involving the nine GGDEF/EAL protein-encoding genes and one HD-GYP protein-encoding gene did not affect sporulation efficiency, the attachment of the exosporium glycoprotein BclA, or biofilm production. Notably, expression of anthrax toxin was not affected by deletion of any of the cdg determinants. Three determinants encoding proteins with active GGDEF domains were found to affect germination kinetics. This study reveals a spore association of cyclic-di-GMP regulatory proteins and a likely role for these proteins in the biology of the B. anthracis spore. IMPORTANCE The genus Bacillus is composed of Gram-positive, rod shaped, soil-dwelling bacteria. As a mechanism for survival in the harsh conditions in soil, the organisms undergo sporulation, and the resulting spores permit the organisms to survive harsh environmental conditions. Although most species are saprophytes, Bacillus cereus and Bacillus anthracis are human pathogens and Bacillus thuringiensis is an insect pathogen. The bacterial c-di-GMP regulatory system is an important control system affecting motility, biofilm formation, and toxin production. The role of c-di-GMP has been studied in the spore-forming bacilli Bacillus subtilis, Bacillus amyloliquefaciens, B. cereus, and B. thuringiensis. However, this regulatory system has not heretofore been examined in the high-consequence zoonotic pathogen of this genus, B. anthracis.
Collapse
|
16
|
Böhm C, Todorović N, Balasso M, Gourinchas G, Winkler A. The PHY Domain Dimer Interface of Bacteriophytochromes Mediates Cross-talk between Photosensory Modules and Output Domains. J Mol Biol 2021; 433:167092. [PMID: 34116122 PMCID: PMC7615318 DOI: 10.1016/j.jmb.2021.167092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Protein dynamics play a major role for the catalytic function of enzymes, the interaction of protein complexes or signal integration in regulatory proteins. In the context of multi-domain proteins involved in light-regulation of enzymatic effectors, the central role of conformational dynamics is well established. Light activation of sensory modules is followed by long-range signal transduction to different effectors; rather than domino-style structural rearrangements, a complex interplay of functional elements is required to maintain functionality. One family of such sensor-effector systems are red-light-regulated phytochromes that control diguanylate cyclases involved in cyclic-dimeric-GMP formation. Based on structural and functional studies of one prototypic family member, the central role of the coiled-coil sensor-effector linker was established. Interestingly, subfamilies with different linker lengths feature strongly varying biochemical characteristics. The dynamic interplay of the domains involved, however, is presently not understood. Here we show that the PHY domain dimer interface plays an essential role in signal integration, and that a functional coupling with the coiled-coil linker element is crucial. Chimaeras of two biochemically different family members highlight the phytochrome-spanning helical spine as an essential structural element involved in light-dependent upregulation of enzymatic turnover. However, isolated structural elements can frequently not be assigned to individual characteristics, which further emphasises the importance of global conformational dynamics. Our results provide insights into the intricate processes at play during light signal integration and transduction in these photosensory systems and thus provide additional guidelines for a more directed design of novel sensor-effector combinations with potential applications as optogenetic tools.
Collapse
Affiliation(s)
- Cornelia Böhm
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Nikolina Todorović
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Marco Balasso
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
17
|
Zhong X, Lu R, Liu F, Ye J, Zhao J, Wang F, Yang M. Identification of LuxR Family Regulators That Integrate Into Quorum Sensing Circuit in Vibrio parahaemolyticus. Front Microbiol 2021; 12:691842. [PMID: 34267739 PMCID: PMC8276238 DOI: 10.3389/fmicb.2021.691842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus is one of the most important food-borne pathogens that cause economic and public health problems worldwide. Quorum sensing (QS) is a way for the cell-cell communication between bacteria that controls a wide spectrum of processes and phenotypic behaviors. In this study, we performed a systematic research of LuxR family regulators in V. parahaemolyticus and found that they influence the bacterial growth and biofilm formation. We then established a QS reporter plasmid based on bioluminescence luxCDABE operon of Vibrio harveyi and demonstrated that several LuxR family regulators integrated into QS circuit in V. parahaemolyticus. Thereinto, a novel LuxR family regulator, named RobA, was identified as a global regulator by RNA-sequencing analyses, which affected the transcription of 515 genes in V. parahaemolyticus. Subsequent studies confirmed that RobA regulated the expression of the exopolysaccharides (EPS) synthesis cluster and thus controlled the biofilm formation. In addition, bioluminescence reporter assays showed that RobA plays a key role in the QS circuit by regulating the expression of opaR, aphA, cpsQ-mfpABC, cpsS, and scrO. We further demonstrated that the regulation of RobA to EPS and MfpABC depended on OpaR and CpsQ, which combined the QS signal with bis-(3'-5')-cyclic dimeric GMP to construct a complex regulatory network of biofilm formation. Our data provided new insights into the bacterial QS mechanisms and biofilm formation in V. parahaemolyticus.
Collapse
Affiliation(s)
- Xiaojun Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Ranran Lu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Fuwen Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Jinjie Ye
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Junyang Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Fei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
18
|
Riboswitch-Mediated Detection of Metabolite Fluctuations During Live Cell Imaging of Bacteria. Methods Mol Biol 2021; 2323:153-170. [PMID: 34086280 DOI: 10.1007/978-1-0716-1499-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Riboswitches are a class of noncoding RNAs that regulate gene expression in response to changes in intracellular metabolite concentrations. When riboswitches are placed upstream of genetic reporters, the degree of reporter activity reflects the relative abundance of the metabolite that is sensed by the riboswitch. This method describes how reporters for live cell imaging, such as yellow fluorescent protein (YFP), can be placed under genetic control by metabolite-sensing riboswitches in the bacterium Bacillus subtilis. Specifically, a protocol for generating a fluorescent YFP reporter, based on a c-di-GMP responsive riboswitch, is outlined below.
Collapse
|
19
|
Abstract
After first describing the issue contents (Biophysical Reviews-Volume 12 Issue 6), this Editorial goes on to provide a short round-up of the activities of the journal in 2020. Directly following this Editorial are two obituaries marking the recent deaths of Prof. Fumio Oosawa (Japan) and Dr. Herbert Tabor (USA)-two major figures in Biophysical/Biochemical science from the last 100 years.
Collapse
Affiliation(s)
- Damien Hall
- Department of Life Sciences and Applied Chemistry, Nagoya Institute of Technology, Gokiso Showa, Nagoya, 466-8555 Japan
| |
Collapse
|
20
|
Hall D. Biophysical Reviews-Quantitative analysis of biological phenomenon. Biophys Rev 2020; 12:601-605. [PMID: 32500361 PMCID: PMC7272135 DOI: 10.1007/s12551-020-00702-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
This Editorial first describes the articles constituting the current Issue (Volume 12 Issue 3). It then goes on to outline the formal invitation procedure for those interested in submitting a review article to the journal. The Editorial concludes by describing the nomination process for the 2021 Michèle Auger Award for Young Scientists' Independent Research.
Collapse
Affiliation(s)
- Damien Hall
- Department of Life Sciences and Applied Chemistry, Nagoya Institute of Technology, Gokiso Showa, Nagoya, Aichi, 466-8555, Japan.
| |
Collapse
|