1
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
2
|
Steinbach AM, Bhadkamkar VL, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, Mukherjee S. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551750. [PMID: 37577546 PMCID: PMC10418220 DOI: 10.1101/2023.08.03.551750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s arsenal of ~330 secreted effector proteins have been biochemically characterized as ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p hijacks ubiquitin signaling within the host cell, we undertook a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection results in increased ubiquitination of host proteins regulating subcellular trafficking and membrane dynamics, most notably 63 of ~160 mammalian Ras superfamily small GTPases. We determine that these small GTPases predominantly undergo non-degradative monoubiquitination, and link ubiquitination to recruitment to the Legionella-containing vacuole membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central, but likely indirect, role in cross-family small GTPase ubiquitination. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. This work positions L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
Collapse
Affiliation(s)
- Adriana M. Steinbach
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - Varun L. Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, California, United States of America
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Gwendolyn M. Jang
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
3
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Brummel JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537381. [PMID: 37131655 PMCID: PMC10153396 DOI: 10.1101/2023.04.19.537381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vibrio vulnificus causes life threatening infections dependent upon the effectors released from the Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The Makes Caterpillars Floppy-like (MCF) cysteine protease effector is activated by host ADP ribosylation factors (ARFs), although the targets of processing activity were unknown. In this study we show MCF binds Ras-related proteins in brain (Rab) GTPases at the same interface occupied by ARFs and then cleaves and/or degrades 24 distinct members of the Rab GTPases family. The cleavage occurs in the C-terminal tails of Rabs. We determine the crystal structure of MCF as a swapped dimer revealing the open, activated state of MCF and then use structure prediction algorithms to show that structural composition, rather than sequence or localization, determine Rabs selected as MCF proteolytic targets. Once cleaved, Rabs become dispersed in cells to drive organelle damage and cell death to promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan M. Packer
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John H. Brummel
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- SickKids IBD Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
5
|
Abstract
The current issue (volume 13 issue 6, 2021) is a Special Issue jointly dedicated to scientific content presented at the 20th triennial IUPAB Congress that was held in conjunction with both the 45th Annual Meeting of the Brazilian Biophysical Society (Sociedade Brasileira de Biofísica - SBBf) and the 50th Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology (Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq). In addition to describing the scientific and nonscientific content arising from the meeting this sub-editorial also provides a look back at some of the high points for Biophysical Reviews in the year 2021 before going on to describe a number of matters of interest to readers of the journal in relation to the coming year of 2022.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
6
|
Hall D. Biophysical reviews-providing an effective critique. Biophys Rev 2021; 13:427-434. [PMID: 34471433 PMCID: PMC8355284 DOI: 10.1007/s12551-021-00824-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
This Editorial for Volume 13, Issue 4 of Biophysical Reviews begins with an introduction to the invited Review contributed by the 2021 winner of "The Michèle Auger Award for Young Scientists' Independent Research" (Assoc. Prof. Jorge Alegre-Cebollada). After providing a short summary of the other articles contained within the Issue, we discuss some additional matters important to the journal and its readers. In particular, this Editorial describes ongoing preparations for the upcoming IUPAB World Congress (October 4th-8th); it introduces two new Executive Editors from the UK and Spain; it describes the journal's placement in the latest SCIMago journal rankings, and it explains a new feature of the journal-"The Biophysical Reviews Historical Top Five". This piece closes with some thoughts about what might constitute a constructive critique of a manuscript.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|