1
|
Moisoi N. Mitochondrial proteases modulate mitochondrial stress signalling and cellular homeostasis in health and disease. Biochimie 2024:S0300-9084(24)00141-X. [PMID: 38906365 DOI: 10.1016/j.biochi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Maintenance of mitochondrial homeostasis requires a plethora of coordinated quality control and adaptations' mechanisms in which mitochondrial proteases play a key role. Their activation or loss of function reverberate beyond local mitochondrial biochemical and metabolic remodelling into coordinated cellular pathways and stress responses that feedback onto the mitochondrial functionality and adaptability. Mitochondrial proteolysis modulates molecular and organellar quality control, metabolic adaptations, lipid homeostasis and regulates transcriptional stress responses. Defective mitochondrial proteolysis results in disease conditions most notably, mitochondrial diseases, neurodegeneration and cancer. Here, it will be discussed how mitochondrial proteases and mitochondria stress signalling impact cellular homeostasis and determine the cellular decision to survive or die, how these processes may impact disease etiopathology, and how modulation of proteolysis may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Health and Social Care Innovations, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH, Leicester, UK.
| |
Collapse
|
2
|
Talluri TR, Kumaresan A, Paul N, Sinha MK, Ebenezer Samuel King JP, Elango K, Sharma A, Raval K, Legha RA, Pal Y. High throughput deep proteomic analysis of seminal plasma from stallions with contrasting semen quality. Syst Biol Reprod Med 2022; 68:272-285. [PMID: 35484763 DOI: 10.1080/19396368.2022.2057257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Seminal plasma proteins and pathways associated with sperm motility have not been elucidated in stallions. Therefore, in the current study, using the high throughput LC/MS-MS approach, we profiled stallion seminal plasma proteins and identified the proteins and pathways associated with sperm motility. Seminal plasma from six stallions producing semen with contrasting sperm motility (n = 3 each high-and low-motile group) was utilized for proteomic analysis. We identified a total of 1687 proteins in stallion seminal plasma, of which 1627 and 1496 proteins were expressed in high- (HM) and low- motile (LM) sperm of stallions, respectively. A total number of 1436 proteins were co-expressed in both the groups; 191 (11%) and 60 (3.5%) proteins were exclusively detected in HM and LM groups, respectively. A total of 220 proteins were upregulated (>1-fold change) and 386 proteins were downregulated in SP from LM group stallions as compared to HM group stallions, while 830 proteins were neutrally expressed in both the groups. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed dysregulation of the important proteins related to mitochondrial function, acrosome, and sperm cytoskeleton in the seminal plasma of stallions producing ejaculates with low sperm motility. High abundance of peroxiredoxins and low abundance of seminal Chaperonin Containing TCP1 Complex (CCT) complex and Annexins indicate dysregulated oxidative metabolism, which might be the underlying etiology for poor sperm motility in LM group stallions. In conclusion, the current study identified the seminal plasma proteomic alterations associated with poor sperm motility in stallions; the results indicate that poor sperm motility in stallions could be associated with altered expression of seminal plasma proteins involved in oxidative metabolism.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India.,ICAR-National Research Centre on Equines, Hisar, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
3
|
Abstract
The current issue (volume 13 issue 6, 2021) is a Special Issue jointly dedicated to scientific content presented at the 20th triennial IUPAB Congress that was held in conjunction with both the 45th Annual Meeting of the Brazilian Biophysical Society (Sociedade Brasileira de Biofísica - SBBf) and the 50th Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology (Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq). In addition to describing the scientific and nonscientific content arising from the meeting this sub-editorial also provides a look back at some of the high points for Biophysical Reviews in the year 2021 before going on to describe a number of matters of interest to readers of the journal in relation to the coming year of 2022.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|