1
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
2
|
Oliveira LR, Pinheiro MR, Tuchina DK, Timoshina PA, Carvalho MI, Oliveira LM. Light in evaluation of molecular diffusion in tissues: Discrimination of pathologies. Adv Drug Deliv Rev 2024; 212:115420. [PMID: 39096937 DOI: 10.1016/j.addr.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The evaluation of the diffusion properties of different molecules in tissues is a subject of great interest in various fields, such as dermatology/cosmetology, clinical medicine, implantology and food preservation. In this review, a discussion of recent studies that used kinetic spectroscopy measurements to evaluate such diffusion properties in various tissues is made. By immersing ex vivo tissues in agents or by topical application of those agents in vivo, their diffusion properties can be evaluated by kinetic collimated transmittance or diffuse reflectance spectroscopy. Using this method, recent studies were able to discriminate the diffusion properties of agents between healthy and diseased tissues, especially in the cases of cancer and diabetes mellitus. In the case of cancer, it was also possible to evaluate an increase of 5% in the mobile water content from the healthy to the cancerous colorectal and kidney tissues. Considering the application of some agents to living organisms or food products to protect them from deterioration during low temperature preservation (cryopreservation), and knowing that such agent inclusion may be reversed, some studies in these fields are also discussed. Considering the broadband application of the optical spectroscopy evaluation of the diffusion properties of agents in tissues and the physiological diagnostic data that such method can acquire, further studies concerning the optimization of fruit sweetness or evaluation of poison diffusion in tissues or antidote application for treatment optimization purposes are indicated as future perspectives.
Collapse
Affiliation(s)
- Luís R Oliveira
- Department of Public and Environmental Health, Polytechnic of Porto - School of Health (ESS), Porto, Portugal
| | - Maria R Pinheiro
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Daria K Tuchina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Polina A Timoshina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation; Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Carvalho
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Department of Electrical and Computer Engineering, Porto University - Faculty of Engineering, Porto, Portugal
| | - Luís M Oliveira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Physics Department, Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal.
| |
Collapse
|
3
|
Hackmann MJ, Cairncross A, Elliot JG, Mulrennan S, Nilsen K, Thompson BR, Li Q, Karnowski K, Sampson DD, McLaughlin RA, Cense B, James AL, Noble PB. Quantification of smooth muscle in human airways by polarization-sensitive optical coherence tomography requires correction for perichondrium. Am J Physiol Lung Cell Mol Physiol 2024; 326:L393-L408. [PMID: 38261720 DOI: 10.1152/ajplung.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Quantifying airway smooth muscle (ASM) in patients with asthma raises the possibility of improved and personalized disease management. Endobronchial polarization-sensitive optical coherence tomography (PS-OCT) is a promising quantitative imaging approach that is in the early stages of clinical translation. To date, only animal tissues have been used to assess the accuracy of PS-OCT to quantify absolute (rather than relative) ASM in cross sections with directly matched histological cross sections as validation. We report the use of whole fresh human and pig airways to perform a detailed side-by-side qualitative and quantitative validation of PS-OCT against gold-standard histology. We matched and quantified 120 sections from five human and seven pig (small and large) airways and linked PS-OCT signatures of ASM to the tissue structural appearance in histology. Notably, we found that human cartilage perichondrium can share with ASM the properties of birefringence and circumferential alignment of fibers, making it a significant confounder for ASM detection. Measurements not corrected for perichondrium overestimated ASM content several-fold (P < 0.001, paired t test). After careful exclusion of perichondrium, we found a strong positive correlation (r = 0.96, P < 0.00001) of ASM area measured by PS-OCT and histology, supporting the method's application in human subjects. Matching human histology further indicated that PS-OCT allows conclusions on the intralayer composition and in turn potential contractile capacity of ASM bands. Together these results form a reliable basis for future clinical studies.NEW & NOTEWORTHY Polarization-sensitive optical coherence tomography (PS-OCT) may facilitate in vivo measurement of airway smooth muscle (ASM). We present a quantitative validation correlating absolute ASM area from PS-OCT to directly matched histological cross sections using human tissue. A major confounder for ASM quantification was observed and resolved: fibrous perichondrium surrounding hyaline cartilage in human airways presents a PS-OCT signature similar to ASM for birefringence and optic axis orientation. Findings impact the development of automated methods for ASM segmentation.
Collapse
Affiliation(s)
- Michael J Hackmann
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alvenia Cairncross
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Siobhain Mulrennan
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Institute of Respiratory Health, The University of Western Australia, Crawley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kris Nilsen
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bruce R Thompson
- Melbourne School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qingyun Li
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Karol Karnowski
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David D Sampson
- School of Computer Science and Electronic Engineering, University of Surrey, Guildford, United Kingdom
| | - Robert A McLaughlin
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Barry Cense
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
4
|
Yanina IY, Genin VD, Genina EA, Mudrak DA, Navolokin NA, Bucharskaya AB, Kistenev YV, Tuchin VV. Multimodal Diagnostics of Changes in Rat Lungs after Vaping. Diagnostics (Basel) 2023; 13:3340. [PMID: 37958237 PMCID: PMC10650729 DOI: 10.3390/diagnostics13213340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: The use of electronic cigarettes has become widespread in recent years. The use of e-cigarettes leads to milder pathological conditions compared to traditional cigarette smoking. Nevertheless, e-liquid vaping can cause morphological changes in lung tissue, which affects and impairs gas exchange. This work studied the changes in morphological and optical properties of lung tissue under the action of an e-liquid aerosol. To do this, we implemented the "passive smoking" model and created the specified concentration of aerosol of the glycerol/propylene glycol mixture in the chamber with the animal. (2) Methods: In ex vivo studies, the lungs of Wistar rats are placed in the e-liquid for 1 h. For in vivo studies, Wistar rats were exposed to the e-liquid vapor in an aerosol administration chamber. After that, lung tissue samples were examined ex vivo using optical coherence tomography (OCT) and spectrometry with an integrating sphere. Absorption and reduced scattering coefficients were estimated for the control and experimental groups. Histological sections were made according to the standard protocol, followed by hematoxylin and eosin staining. (3) Results: Exposure to e-liquid in ex vivo and aerosol in in vivo studies was found to result in the optical clearing of lung tissue. Histological examination of the lung samples showed areas of emphysematous expansion of the alveoli, thickening of the alveolar septa, and the phenomenon of plasma permeation, which is less pronounced in in vivo studies than for the exposure of e-liquid ex vivo. E-liquid aerosol application allows for an increased resolution and improved imaging of lung tissues using OCT. Spectral studies showed significant differences between the control group and the ex vivo group in the spectral range of water absorption. It can be associated with dehydration of lung tissue owing to the hyperosmotic properties of glycerol and propylene glycol, which are the main components of e-liquids. (4) Conclusions: A decrease in the volume of air in lung tissue and higher packing of its structure under e-liquid vaping causes a better contrast of OCT images compared to intact lung tissue.
Collapse
Affiliation(s)
- Irina Yu. Yanina
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
| | - Vadim D. Genin
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Elina A. Genina
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Dmitry A. Mudrak
- Department of Pathological Anatomy, Saratov State Medical University, 410012 Saratov, Russia; (D.A.M.); (N.A.N.)
| | - Nikita A. Navolokin
- Department of Pathological Anatomy, Saratov State Medical University, 410012 Saratov, Russia; (D.A.M.); (N.A.N.)
- Experimental Department, Center for Collective Use of Experimental Oncology, Saratov State Medical University, 410012 Saratov, Russia
- State Healthcare Institution, Saratov City Clinical Hospital No. 1 Named after Yu.Ya. Gordeev, 410017 Saratov, Russia
| | - Alla B. Bucharskaya
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
- Department of Pathological Anatomy, Saratov State Medical University, 410012 Saratov, Russia; (D.A.M.); (N.A.N.)
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
| | - Valery V. Tuchin
- Institution of Physics, Saratov State University, 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 634050 Tomsk, Russia; (A.B.B.); (Y.V.K.)
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 410028 Saratov, Russia
| |
Collapse
|
5
|
Jaafar A, Albarazanchi A, Kadhim MJ, Darvin ME, Váczi T, Tuchin VV, Veres M. Impact of e-cigarette liquid on porcine lung tissue-Ex vivo confocal Raman micro-spectroscopy study. JOURNAL OF BIOPHOTONICS 2023:e202300336. [PMID: 37851480 DOI: 10.1002/jbio.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Ex vivo porcine lung immersed in e-liquid was investigated in-depth using confocal Raman micro-spectroscopy to assess the e-liquid influence on the lung. It was found that lung-related Raman band intensities at 1002, 1548, 1618 and 1655 cm-1 increased after first and second treatments except the surface, which was attributed to the well-known optical clearing (OC) effect due to alveoli filling with e-liquid resulting in light scattering reduction. The autofluorescence enhancement was explained by oxidative stress induced in lung during exposure to e-liquid. Moreover, e-liquid induced collagen dehydration was revealed by the I937 /I926 Raman band intensity ratio change. The effect was enhanced after the second treatment of the same lung tissue that indicates the possibility of multi-step OC treatment. We hypothesize that the nicotine-flavour-free e-liquids containing glycerol and propylene glycol could potentially be used in clinical protocols as OC agent for enhanced in-depth Raman-guided bronchoscopy.
Collapse
Affiliation(s)
- Ali Jaafar
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest, Hungary
- Institute of Physics, University of Szeged, Szeged, Hungary
- Ministry of Higher Education and Scientific Research, Baghdad, Iraq
| | - Abbas Albarazanchi
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| | | | | | - Tamás Váczi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest, Hungary
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
| | - Miklós Veres
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest, Hungary
| |
Collapse
|
6
|
Tsygankov A, Riznichenko G, Rubin A, Solovchenko A, Tuchin V. Editorial for the special issue of biophysical reviews on the 9th Congress of the Russian society for photobiology held in Shepsi, Krasnodar region, Russia, on September 12-19, 2021. Biophys Rev 2022; 14:743-749. [PMID: 35990254 PMCID: PMC9383676 DOI: 10.1007/s12551-022-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/07/2022] [Indexed: 10/31/2022] Open
Affiliation(s)
- Anatoly Tsygankov
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center “Pushchino’s Center of Biological Research”, Institutskaya St., 2, Pushchino, Moscow Region 142290 Russia
| | - Galina Riznichenko
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow, 119234 Russia
| | - Andrew Rubin
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow, 119234 Russia
| | - Alexei Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow, 119234 Russia
| | - Valery Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskya St, Saratov, 410012 Russia
| |
Collapse
|