1
|
Wang Z, Yang T, Cheng Q, Kong D, Gong C, Liu W. Short-wave infrared computed tomography. OPTICS EXPRESS 2022; 30:32051-32060. [PMID: 36242274 DOI: 10.1364/oe.467437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate a short-wave infrared computed tomography method. It uses a fiber-coupled 1.44µm super-luminescent diode as light source, a PbSe photodiode as infrared detector, and an electronically controlled rotation and translation stage for high-speed Radon scanning. It is a safe and low power nondestructive testing method that can be used for the detection of plastic polymers, biological tissue and other materials that visible light cannot penetrate. We analyze the theoretical resolution of the method and build a short-wave infrared computed tomography system, which realizes the tomography and 3D reconstruction of black plastic bottles and artificial blood vessels. The measured resolution reaches10µm.
Collapse
|
2
|
Sato E, Oda Y, Yoshida S, Yoshioka K, Moriyama H, Watanabe M. Near-infrared-ray computed tomography with an 808 nm laser beam and high spatial resolutions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013702. [PMID: 33514199 DOI: 10.1063/5.0018976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
To increase the penetrating photons and to improve the spatial resolution in near-infrared-ray computed tomography (NIR-CT), we used an 808 nm laser module. The NIR photons are produced from the laser module, and an object is exposed to the laser beam. The laser power is controlled by the applied voltage, and the photodiode detects photons penetrating through the object. To reduce scattering photons from the object, a 1.0-mm-diameter graphite pinhole is set behind the object. The spatial resolutions were improved using a 1.0-mm-diameter 5.0-mm-length graphite collimator and were ∼1 × 1 mm2. The NIR-CT was accomplished by repeating the object-reciprocating translations and rotations of the object using the turntable, and the ray-sampling-translation and rotation steps were 0.1 mm and 0.5°, respectively. The scanning time was 19.6 min at a total rotation angle of 180°. Triple-sensitivity CT was accomplished using amplifiers, and a graphite rod in the chicken fillet was visible when increasing amplification factor.
Collapse
Affiliation(s)
- Eiichi Sato
- Department of Physics, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Yasuyuki Oda
- Department of Physics, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Sohei Yoshida
- Department of Radiology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hodaka Moriyama
- Department of Surgery, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro, Tokyo 153-8515, Japan
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, 2-22-36 Ohashi, Meguro, Tokyo 153-8515, Japan
| |
Collapse
|
3
|
Yoshida S, Sato E, Oda Y, Yoshioka K, Moriyama H, Watanabe M. Triple-sensitivity high-spatial-resolution X-ray computed tomography using a cadmium-telluride detector and its beam-hardening effect. Appl Radiat Isot 2020; 159:109089. [DOI: 10.1016/j.apradiso.2020.109089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 02/19/2020] [Indexed: 11/15/2022]
|