1
|
Elfellaki N, Berrouch S, Biary A, Goïta S, Rafi H, Lachkar H, Dehhani O, Rougemont AD, Bourlet T, Hafid JE. Comparison of four concentration methods of adenovirus, norovirus and rotavirus in tap water. J Virol Methods 2024; 330:115013. [PMID: 39209160 DOI: 10.1016/j.jviromet.2024.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Human enteric viruses, as adenovirus (HAdV), norovirus (HuNoV) and rotavirus (RVA) are significant causes of gastroenteritis associated with consumption of contaminated water worldwide. Various methods have been described for their detection and monitoring in water. The aim of this study was to compare the performance of four conditions for concentrating HAdV, HuNoV and RVA from water matrices, in order to develop a single protocol that could simultaneously concentrate all target viruses from tap water. The tested conditions were based on the adsorption-elution using electronegative filters, in which we evaluated cation-coated filtration by MgCl2 with or without acid rinse by H2SO4 and two elution buffers, namely NaOH and tris-glycine-beef extract. Genomic material was extracted and amplified by real-time PCR and real-time RT-PCR using commercial kits. Based on the statistical analysis of amplification results (cycles of quantification), the condition involving cation-coated filtration by MgCl2 using electronegative filters with acid rinse by H2SO4 combined with NaOH elution allowed efficient recovery of both HAdV, HuNoV and RVA from tap water compared to the other conditions. These findings confirm the effectiveness of the approach used to monitor three major enteric viruses in tap water.
Collapse
Affiliation(s)
- Nouhaila Elfellaki
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Berrouch
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco; Higher School of Technology of El Kelâa des Sraghna, Cadi Ayyad University, El Kelâa des Sraghna, Morocco
| | - Abdelkader Biary
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Simeon Goïta
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Houda Rafi
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Hibatallah Lachkar
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Oussama Dehhani
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon Bourgogne, France
| | - Thomas Bourlet
- Infectious Agents and Hygiene Department, University Hospital of Saint Etienne, Saint-Etienne, France
| | - Jamal Eddine Hafid
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
2
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
|
4
|
Gerba CP, Betancourt WQ. Assessing the Occurrence of Waterborne Viruses in Reuse Systems: Analytical Limits and Needs. Pathogens 2019; 8:pathogens8030107. [PMID: 31336640 PMCID: PMC6789576 DOI: 10.3390/pathogens8030107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023] Open
Abstract
Detection of waterborne enteric viruses is an essential tool in assessing the risk of waterborne transmission. Cell culture is considered a gold standard for detection of these viruses. However, it is important to recognize the uncertainty and limitations of enteric virus detection in cell culture. Cell culture cannot support replication of all virus types and strains, and numerous factors control the efficacy of specific virus detection assays, including chemical additives, cell culture passage number, and sequential passage of a sample in cell culture. These factors can result in a 2- to 100-fold underestimation of virus infectivity. Molecular methods reduce the time for detection of viruses and are useful for detection of those that do not produce cytopathogenic effects. The usefulness of polymerase chain reaction (PCR) to access virus infectivity has been demonstrated for only a limited number of enteric viruses and is limited by an understanding of the mechanism of virus inactivation. All of these issues are important to consider when assessing waterborne infectious viruses and expected goals on virus reductions needed for recycled water. The use of safety factors to account for this may be useful to ensure that the risks in drinking water and recycled water for potable reuse are minimized.
Collapse
Affiliation(s)
- Charles P Gerba
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Walter Q Betancourt
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 W. Calle Agua Nueva, Tucson, AZ 85745, USA.
| |
Collapse
|