1
|
Chettleburgh C, McDougall H, Parreira V, Goodridge L, Habash M. Seasonality of enteric viruses and correlation of hepatitis a virus in wastewater with clinical cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178862. [PMID: 39955939 DOI: 10.1016/j.scitotenv.2025.178862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Human adenovirus F41 (HAdV-41), norovirus genogroup II (HNV-GII), rotavirus group A (RVA), and hepatitis A virus (HAV) are responsible for millions of illnesses every year in Canada. Wastewater-based epidemiology is one way to monitor the prevalence of these underreported (HAV) and non-reportable (HAdV-41, HNV-GII, RVA) food and waterborne enteric viruses. In this study, we monitored the presence of these four viruses in wastewater over 16 months from September 2022 until December 2023 using samples from two locations in southern Ontario. Viruses in 286 wastewater samples were concentrated using PEG precipitation and quantified using a multiplex RT-qPCR assay for HAdV-41, HNV-GII, and RVA, and a singleplex RT-qPCR assay for HAV. In agreement with historical clinical data, HNV-GII and RVA had seasonal peaks in wastewater in the winter (HNV-GII, up to 1.09 × 103 gene copies (GC)/mL) and spring (RVA, up to 1.20 × 102 GC/mL). The concentration of HAdV-41 in wastewater had a significant seasonal peak in the fall of 2022 (up to 4.65 × 104 GC/mL) that was not repeated in the fall of 2023. The detection of HAV in 24 of 127 samples was correlated with four clinical cases in one sewershed with a one-week wastewater lead time.
Collapse
Affiliation(s)
- Charles Chettleburgh
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray St., Guelph, ON N1G 1Y2, Canada
| | - Hanlan McDougall
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Valeria Parreira
- Department of Food Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray St., Guelph, ON N1G 1Y2, Canada
| | - Lawrence Goodridge
- Department of Food Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray St., Guelph, ON N1G 1Y2, Canada
| | - Marc Habash
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
2
|
Liang C, Wang J, Zhang Y, Liu Z, Zhu Q, Huo Y, Zhang Z, Huo M. Assessing the viral enrichment methods and their roles in indicating wastewater-associated pollution in aquatic environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117951. [PMID: 40020382 DOI: 10.1016/j.ecoenv.2025.117951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increasing need for monitoring viral contamination in aquatic environments, research has increasingly focused on utilizing viruses as indicators for microbial contamination assessment. However, studies on enrichment techniques for waterborne viruses and their occurrence and risk characteristics in the environment remain relatively limited. In this study, samples were collected over one year from a wastewater treatment plant and its receiving stream to evaluate the optimal enrichment method and to assess the presence of four representative viral indicators-human adenovirus (HAdV), crAssPhage, enterovirus (EV), and the pepper mild mottle virus (PMMoV)-in the urban water environment. The results showed that skimmed milk flocculation (SMF) and silica attachment method (SAM) achieved better viral enrichment performance in both wastewater and surface water, demonstrating greater seasonal consistency compared to other methods. Seasonal variations in virus concentrations were observed, with HAdV and crAssphage peaking in winter, while EV and PMMoV peaked in summer. Virus concentrations in wastewater treatment plants were reduced by 8.61 log10 copies/L from influent to effluent. However, residual viruses discharged into receiving streams still pose a significant environmental exposure risk, as indicated by Quantitative Microbial Risk Assessment (QMRA) results, which exhibited a strong correlation with population density. This study highlights the importance of waterborne viral indicators in developing effective water quality management strategies to ensure the safe control of viruses in aquatic environments.
Collapse
Affiliation(s)
- Chen Liang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Jiaxu Wang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Ying Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Zhibo Liu
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Qiyu Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China; Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Zhiruo Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; School of Economics and Management, Jilin Jianzhu University, Changchun 130118, China
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
3
|
Gleerup D, Trypsteen W, Fraley SI, De Spiegelaere W. Digital PCR in Virology: Current Applications and Future Perspectives. Mol Diagn Ther 2025; 29:43-54. [PMID: 39487879 DOI: 10.1007/s40291-024-00751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Digital PCR (dPCR) has been used in the field of virology since its inception. Technological innovations in microfluidics more than a decade ago caused a sharp increase in its use. There is an emerging consensus that dPCR now outperforms quantitative PCR (qPCR) in the basic parameters such as precision, sensitivity, accuracy, repeatability and resistance to inhibitors. These strengths have led to several current applications in quantification, mutation detection and environmental DNA and RNA samples. In high throughput scenarios, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the cost and throughput still significantly hampered the adaption of dPCR. There is much unexplored potential within the multiplexing capabilities of dPCR. This will allow simultaneous multi-target quantification and can also partially alleviate the throughput and cost drawback. In this review, we discuss the strengths and weaknesses of dPCR with a focus on virology applications and we discuss future applications. Finally, we discuss recent evolutions of the technology in the form of real-time dPCR and digital high-resolution melting.
Collapse
Affiliation(s)
- David Gleerup
- Laboratory of Veterinary Morphology, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820, Merelbeke, Belgium
- Ghent University Digital PCR Consortium, Ghent University, Ghent, Belgium
| | - Wim Trypsteen
- Ghent University Digital PCR Consortium, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stephanie I Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Medicine, Ghent University, Campus Merelbeke, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Ghent University Digital PCR Consortium, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Awere-Duodu A, Donkor ES. Rotavirus in Water Environments: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241276667. [PMID: 39439598 PMCID: PMC11494518 DOI: 10.1177/11786302241276667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 10/25/2024]
Abstract
Background Despite the adoption of rotavirus vaccines, sporadic outbreaks of the virus have been reported in many parts of the world. These outbreaks are facilitated by several factors including the ease of transmission of rotavirus through water environments. This systematic review aimed to determine the global prevalence of rotavirus in water environments. Methodology Comprehensive Boolean searches were conducted in PubMed, SCOPUS, and Web of Science. A total of 75 eligible studies were included in the study, from which data was extracted for both systematic review and meta-analysis. Extracted prevalence data was grouped according to six water categories: drinking water, untreated sewage, treated sewage, surface water, groundwater, and others. A single-group prevalence meta-analysis was conducted in RStudio version 4.3.3 subjecting the data to the random-effects model. Results The included studies were conducted in 32 countries that span 5 continents: Africa, Asia, Europe, North America, and South America. The pooled prevalence of rotavirus in water environments was 40.86%. Among the individual water environments, untreated sewage had the highest prevalence (68.27%), followed by treated sewage (53.07%), surface water (33.40%), groundwater (25.64%) and drinking water (9.46%). Continental stratification of the prevalence data was as follows: Africa (51.75%), Asia (32.48%), Europe (55.90%), North America (41.80%), and South America (28.51%). Conclusion There is a high prevalence of rotavirus in water environments, especially in untreated sewage, and in Europe. Further research is needed to find more efficient methods that can effectively eliminate rotavirus to insignificant levels in water environments.
Collapse
Affiliation(s)
- Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
5
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
6
|
Nema RK, Singh AK, Nagar J, Prajapati B, Sikenis M, Singh S, Diwan V, Singh P, Tiwari R, Mishra PK. Investigating the Presence of Rotavirus in Wastewater Samples of Bhopal Region, India, by Utilizing Droplet Digital Polymerase Chain Reaction. Cureus 2024; 16:e58882. [PMID: 38800300 PMCID: PMC11116745 DOI: 10.7759/cureus.58882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Rotavirus-induced viral gastroenteritis outbreaks result in over two million hospitalizations globally yearly. Wastewater-based epidemiology (WBE) has emerged as a crucial tool for detecting and monitoring viral outbreaks. The adoption of WBE has been instrumental in the early detection and surveillance of such viral outbreaks, providing a non-invasive method to assess public health. OBJECTIVE This study aims to utilize droplet digital polymerase chain reaction (ddPCR) technology to detect and quantify Rotavirus in wastewater samples collected from the Bhopal region of India, thereby contributing to the understanding and management of viral gastroenteritis outbreaks through environmental surveillance. METHODS In this study, we used ddPCR to detect and quantify Rotavirus in wastewater samples collected from the Bhopal region of India. We monitored its viral presence in municipal sewage treatment plants bi-weekly using an advanced ddPCR assay. Targeting the rotavirus non-structural protein 3 (NSP-3) region with custom primers and TaqMan probes, we detected virus concentration employing polyethylene glycol (PEG). Following RNA isolation, complementary DNA (cDNA) synthesis, and ddPCR analysis, our novel method eliminated standard curve dependence, propelling virus research and treatment forward. RESULTS Out of the 42 samples collected, a 16.60% positivity rate was observed, indicating a moderate presence of Rotavirus in Bhopal. The wastewater treatment plants (WWTP) attached to a hospital exhibited a 42.85% positivity rate, indicating the need for targeted monitoring. Leveraging ddPCR, precise quantification of rotavirus concentrations (ranging from 0.75 to 28.9 copies/µL) facilitated understanding and supported effective remediation. CONCLUSIONS This study emphasizes the importance of vigilant wastewater surveillance, especially in WWTPs with higher rotavirus prevalence. The significance of ddPCR in comparison to conventional and real-time PCR lies in its superior sensitivity and specificity in detecting and quantifying positive samples. Furthermore, it can identify positive samples even in the smallest quantities without the need for a standard curve to evaluate. This makes ddPCR a valuable tool for accurate and precise detection and quantification of samples.
Collapse
Affiliation(s)
- Ram K Nema
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Ashutosh K Singh
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Juhi Nagar
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Bhavna Prajapati
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Mudra Sikenis
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Pushpendra Singh
- Division of Microbial Genomics, Indian Council of Medical Research (ICMR) - National Institute for Research in Tribal Health, Jabalpur, IND
| | - Rajnarayan Tiwari
- Division of Epidemiology and Public Health, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Pradyumna K Mishra
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| |
Collapse
|
7
|
Valdivia-Carrera CA, Ho-Palma AC, Munguia-Mercado A, Gonzalez-Pizarro K, Ibacache-Quiroga C, Dinamarca A, Stehlík M, Rusiñol M, Girones R, Lopez-Urbina MT, Basaldua Galarza A, Gonzales-Gustavson E. Surveillance of SARS-CoV-2, rotavirus, norovirus genogroup II, and human adenovirus in wastewater as an epidemiological tool to anticipate outbreaks of COVID-19 and acute gastroenteritis in a city without a wastewater treatment plant in the Peruvian Highlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167161. [PMID: 37730068 DOI: 10.1016/j.scitotenv.2023.167161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has demonstrated that Wastewater Based Epidemiology is a fast and economical alternative for monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the community level in high-income countries. In the present study, wastewater from a city in the Peruvian Highlands, which lacks a wastewater treatment plant, was monitored for one year to assess the relationship between the concentration of SARS-CoV-2 and the reported cases of COVID-19 in the community. Additionally, we compared the relationship between rotavirus (RV), norovirus genogroup II (NoV GGII), and human adenovirus (HAdV) with the number of reported cases of acute gastroenteritis. Before commencing the analysis of the samples, the viral recovery efficacy of three processing methods was determined in spiked wastewater with SARS-CoV-2. This evaluation demonstrated the highest recovery rate with direct analysis (72.2 %), as compared to ultrafiltration (50.8 %) and skimmed milk flocculation (5.6 %). Wastewater monitoring revealed that 72 % (36/50) of the samples tested positive for SARS-CoV-2, with direct analysis yielding the highest detection frequency and quantification of SARS-CoV-2. Furthermore, a strong correlation was observed between the concentration of SARS-CoV-2 in wastewater and the reported cases of COVID-19, mainly when we shift the concentration of SARS-CoV-2 by two weeks, which allows us to anticipate the onset of the fourth and fifth waves of the pandemic in Peru up to two weeks in advance. All samples processed using the skimmed milk flocculation method tested positive and showed high concentrations of RV, NoV GGII, and HAdV. In fact, the highest RV concentrations were detected up to four weeks before outbreaks of acute gastroenteritis reported in children under four years of age. In conclusion, the results of this study suggest that periodic wastewater monitoring is an excellent epidemiological tool for surveillance and can anticipate outbreaks of infectious diseases, such as COVID-19, in low- and middle-income countries.
Collapse
Affiliation(s)
- Cesar A Valdivia-Carrera
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru; Department of Animal Health and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| | - Ana C Ho-Palma
- Department of Human Medicine, School of Human Medicine, Universidad Nacional del Centro del Peru, Av. Mariscal Castilla 3909, Huancayo, Peru.
| | - Astrid Munguia-Mercado
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru.
| | - Karoll Gonzalez-Pizarro
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Claudia Ibacache-Quiroga
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile; Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Alejandro Dinamarca
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile; Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Milan Stehlík
- Institute of Statistics, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaiso, Chile; Linz Institute of Technology & Department of Applied Statistics, Johannes Kepler University in Linz, Altenberger Straße 69, 4040 Linz, Austria.
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Maria T Lopez-Urbina
- Laboratory of Veterinary Epidemiology and Economics, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| | - Anani Basaldua Galarza
- Department of Human Medicine, School of Human Medicine, Universidad Nacional del Centro del Peru, Av. Mariscal Castilla 3909, Huancayo, Peru; Dirección Ejecutiva de Epidemiología, Dirección Regional de Salud, Jr. Julio Cesar Tello 488, Huancayo 12004, Junin, Peru.
| | - Eloy Gonzales-Gustavson
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru; Department of Animal Health and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| |
Collapse
|
8
|
Lanzarini NM, Mannarino CF, Mata RM, Saggioro EM, Moreira JC, Miagostovich MP. Quantification and molecular characterization of intact rotavirus species A (RVA) in municipal solid waste leachate. J Appl Microbiol 2023; 134:lxad146. [PMID: 37429601 DOI: 10.1093/jambio/lxad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
AIMS Leachate comprises a solid waste decomposition product found fresh in collection trucks or as an effluent in landfills. This study aimed to assess the occurrence, concentrations, and genetic diversity of intact rotavirus species A (RVA) in solid waste leachate. METHODS AND RESULTS Leachate samples were concentrated by ultracentrifugation, treated with propidium monoazide (PMA), and exposed to LED photolysis. Treated and untread samples were extracted using the QIAamp Fast DNA Stool mini kit, and nucleic acids were screened for RVA employing a Taqman® Real-time PCR. The PMA RT-qPCR method detected RVA in eight out of nine truck samples and in 15.40% (2/13) of the landfill leachate samples. The RVA concentrations in the PMA-treated samples ranged from 4.57 × 103 to 2.15 × 107 genomic copies (GC) 100 mL-1 in truck leachate and from 7.83 × 103 to 1.42 × 104 GC 100 mL-1 in landfill samples. Six truck leachate samples were characterized as RVA VP6 genogroup I2 by partial nucleotide sequencing. CONCLUSIONS The high intact RVA detection rates and concentrations in truck leachate samples indicate potential infectivity and comprise a warning for solid waste collectors concerning hand-to-mouth contact and the splash route.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Rafaela Marinho Mata
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Enrico Mendes Saggioro
- Environmental Health Evaluation and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Josino Costa Moreira
- Center for Studies on Workers' Health and Human Ecology, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
9
|
van Boven M, Hetebrij WA, Swart A, Nagelkerke E, van der Beek RF, Stouten S, Hoogeveen RT, Miura F, Kloosterman A, van der Drift AMR, Welling A, Lodder WJ, de Roda Husman AM. Patterns of SARS-CoV-2 circulation revealed by a nationwide sewage surveillance programme, the Netherlands, August 2020 to February 2022. Euro Surveill 2023; 28:2200700. [PMID: 37347416 PMCID: PMC10288829 DOI: 10.2807/1560-7917.es.2023.28.25.2200700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/16/2023] [Indexed: 06/23/2023] Open
Abstract
BackgroundSurveillance of SARS-CoV-2 in wastewater offers a near real-time tool to track circulation of SARS-CoV-2 at a local scale. However, individual measurements of SARS-CoV-2 in sewage are noisy, inherently variable and can be left-censored.AimWe aimed to infer latent virus loads in a comprehensive sewage surveillance programme that includes all sewage treatment plants (STPs) in the Netherlands and covers 99.6% of the Dutch population.MethodsWe applied a multilevel Bayesian penalised spline model to estimate time- and STP-specific virus loads based on water flow-adjusted SARS-CoV-2 qRT-PCR data for one to four sewage samples per week for each of the more than 300 STPs.ResultsThe model captured the epidemic upsurges and downturns in the Netherlands, despite substantial day-to-day variation in the measurements. Estimated STP virus loads varied by more than two orders of magnitude, from ca 1012 virus particles per 100,000 persons per day in the epidemic trough in August 2020 to almost 1015 per 100,000 in many STPs in January 2022. The timing of epidemics at the local level was slightly shifted between STPs and municipalities, which resulted in less pronounced peaks and troughs at the national level.ConclusionAlthough substantial day-to-day variation is observed in virus load measurements, wastewater-based surveillance of SARS-CoV-2 that is performed at high sampling frequency can track long-term progression of an epidemic at a local scale in near real time.
Collapse
Affiliation(s)
- Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wouter A Hetebrij
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Arno Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Erwin Nagelkerke
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rudolf Fhj van der Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sjors Stouten
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rudolf T Hoogeveen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fuminari Miura
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Center for Marine Environmental Studies (CMES), Ehime University, Ehime, Japan
| | - Astrid Kloosterman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne-Merel R van der Drift
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne Welling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Willemijn J Lodder
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Science (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Itani T, Chalapa V, Semenov A, Sergeev A. Laboratory diagnosis of nonpolio enteroviruses: A review of the current literature. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
11
|
Pasalari H, Akbari H, Ataei-Pirkooh A, Adibzadeh A, Akbari H. Assessment of rotavirus and norovirus emitted from water spray park: QMRA, diseases burden and sensitivity analysis. Heliyon 2022; 8:e10957. [PMID: 36254289 PMCID: PMC9568861 DOI: 10.1016/j.heliyon.2022.e10957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A quantitative model on exposure to pathogenic viruses in air of recreational area and their corresponding health effects is necessary to provide mitigation actions in content of emergency response plans (ERP). Here, the health risk associated with exposure to two pathogenic viruses of concern: Rotavirus (RoV) and Norovirus (NoV) in air of water spray park were estimated using a quantitative microbial risk assessment (QMRA) model. To this end, real-time Reverse Transcriptase polymerase chain reaction (real-time RT-PCR) was employed to measure the concentration levels of RoV and NoV over a twelve-month period. The probability of infection, illness and diseases burden of gastrointestinal illness (GI) caused by RoV and NoV for both workers and visitors were estimated using QMRA and Monto-Carlo simulation technique. The annual mean concentration for RoV and NoV in sampling air of water spray park were 20and 1754, respectively. The %95 confidence interval (CI) calculated annual DALY indicator for RoV (Workers: 2.62 × 10-4-2.62 × 10-1, Visitors: 1.50 × 10-5-2.42 × 10-1) and NoV (Workers: 5.54 × 10-3-2.53 × 10-1; Visitors: 5.18 × 10-4-2.54 × 10-1) were significantly higher the recommended values by WHO and US EPA (10-6-10-4 DALY pppy). According to sensitivity analysis, exposure dose and disease burden per case (DBPC) were found as the most influencing factors on disease burden as a consequences of exposure to RoV and NoV, respectively. The comprehensive information on DALY and QMRA can aid authorities involved in risk assessment and recreational actions to adopt proper approach and mitigation actions to minimize the health risk.
Collapse
Affiliation(s)
- Hasan Pasalari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Edokpayi JN, Swalaha FM. Global public health implications of human exposure to viral contaminated water. Front Microbiol 2022; 13:981896. [PMID: 36110296 PMCID: PMC9468673 DOI: 10.3389/fmicb.2022.981896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging it into the environment. Furthermore, we highlight the need for more research to focus on the development of more holistic disinfection methods that will inactivate waterborne viruses in municipal wastewater discharges, as this is highly needed to curtail the public health effects of human exposure to contaminated water. Moreover, such a method must be devoid of disinfection by-products that have mutagenic and carcinogenic potential.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
13
|
Opere WM, John M, Ombori O, Kiulia NM. Identification of enteroviruses along Lake Victoria shoreline - a potential indicator of sewage pollution. Access Microbiol 2022; 4:000334. [PMID: 35812714 PMCID: PMC9260088 DOI: 10.1099/acmi.0.000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
Abstract
Enteric viruses are mainly transmitted by the faecal-oral route and have been linked to several diseases including gastroenteritis and respiratory infections. Their presence in surface waters has been exacerbated by pollution from a variety of point sources such as sewage discharge. We studied the occurrence of enteroviruses in water samples from Lake Victoriain Kenya to investigate if there was a link between sewage pollution and detection of enteroviruses (EVs) to build a baseline for an enteric viruses monitoring platform for this region. We analysed 216 samples collected over 6 months from six different locations along the Homa Bay Pier. The six sampling locations comprised of three sites (P3, P5, P6) located <500 m from a local sewage treatment plant and pit latrines while three other sites (P1, P2, P4) were located at approximately 0.5 to 3 Km. EVs were concentrated using glass wool adsorption elution protocol and identified using the nested reverse transcription-polymerase chain reaction. The odds ratio was performed to determine whether the location of the sources of sewage pollution near the lake was associated with the EVs contamination. Five out of 108 (5 %) samples collected from the sites (P3, P5 and P6 were EV positive, while 2 % (2/108) of samples from P1, P2 and P4 were EV positive. The presence of the EVs was associated with the distance from the possible sources of faecal contamination (odds ratio 20.28 and 4.86, confidence interval 2.42, and 0.95) for pit latrines and the sewage treatment plant respectively. The result from this study indicates that sewage discharge at the shoreline of Lake Victoria may have been the source of EVs contamination. Data from this study could significantly contribute to informing risk management on sewage pollution in Lake Victoria and it is important to continue monitoring this lake for potentially pathogenic enteric viruses.
Collapse
Affiliation(s)
- Wasonga M. Opere
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Maingi John
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Omwoyo Ombori
- Department of Plant Sciences, Kenyatta University, Nairobi, Kenya
| | - Nicholas M. Kiulia
- Enteric pathogens & Water Research Laboratory, Institute of Primate Research (IPR), Nairobi, Kenya
| |
Collapse
|
14
|
Omatola CA, Olaniran AO. Epidemiological significance of the occurrence and persistence of rotaviruses in water and sewage: a critical review and proposal for routine microbiological monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:380-399. [PMID: 35174845 DOI: 10.1039/d1em00435b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| |
Collapse
|