1
|
Poimenova IA, Sozarukova MM, Ratova DMV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024; 29:4433. [PMID: 39339429 PMCID: PMC11433793 DOI: 10.3390/molecules29184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.
Collapse
Affiliation(s)
- Iuliia A. Poimenova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | - Daria-Maria V. Ratova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vita N. Nikitina
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vladislav R. Khabibullin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Federal State Budgetary Institution of Science Institute of African Studies, Russian Academy of Sciences, Spiridonovka St., 30/1, 123001 Moscow, Russia
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Elena V. Proskurnina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| |
Collapse
|
2
|
Al Mughairy B, Al-Lawati HA. Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115802] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Isokawa M, Kanamori T, Funatsu T, Tsunoda M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:103-15. [PMID: 24556466 DOI: 10.1016/j.jchromb.2013.12.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/31/2013] [Accepted: 12/31/2013] [Indexed: 11/28/2022]
Abstract
Low-molecular-weight biothiols such as homocysteine, cysteine, and glutathione are metabolites of the sulfur cycle and play important roles in biological processes such as the antioxidant defense network, methionine cycle, and protein synthesis. Thiol concentrations in human plasma and blood are related to diseases such as cardiovascular disease, neurodegenerative disease, and cancer. The concentrations of homocysteine, cysteine, and glutathione in plasma samples from healthy human subjects are approximately in the range of 5-15, 200-300, and 1-5 μM, respectively. Glutathione concentration in the whole blood is in the millimolar range. Measurement of biothiol levels in plasma and blood is thought to be important for understanding the physiological roles and biomarkers for certain diseases. This review summarizes the relationship of biothiols with certain disease as well as pre-analytical treatment and analytical methods for determination of biothiols in human plasma and blood by using high-performance liquid chromatography and capillary electrophoresis coupled with ultraviolet, fluorescence, or chemiluminescence detection; or mass spectrometry.
Collapse
Affiliation(s)
- Muneki Isokawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Kanamori
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Elgawish MS, Shimomai C, Kishikawa N, Ohyama K, Wada M, Kuroda N. Development and Validation of the First Assay Method Coupling Liquid Chromatography with Chemiluminescence for the Simultaneous Determination of Menadione and Its Thioether Conjugates in Rat Plasma. Chem Res Toxicol 2013; 26:1409-17. [DOI: 10.1021/tx400253k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mohamed Saleh Elgawish
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Pharmaceutical Chemistry Department,
Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Chikako Shimomai
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoya Kishikawa
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaname Ohyama
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsuhiro Wada
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
5
|
Wutz K, Meyer VK, Wacheck S, Krol P, Gareis M, Nölting C, Struck F, Soutschek E, Böcher O, Niessner R, Seidel M. New route for fast detection of antibodies against zoonotic pathogens in sera of slaughtered pigs by means of flow-through chemiluminescence immunochips. Anal Chem 2013; 85:5279-85. [PMID: 23611726 DOI: 10.1021/ac400781t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The research on fast screening methods for antibodies against zoonotic pathogens in slaughter animals is important for food safety in farming and meat-processing industries. As a proof-of-concept study, antibodies against the emerging zoonotic pathogen hepatitis E virus (HEV) and enteropathogenic Yersinia spp. were analyzed in parallel using immobilized recombinant antigens (rAgs) of HEV genotypes 1 and 3 and Yersinia outer protein D (YopD) on a flow-through chemiluminescence immunochip. These rAgs are usually part of commercially available line immunoassays (LIAs) used for human diagnostics. In this study, sera from slaughtered pigs were tested on the microarray analysis platform MCR 3 to detect anti-HEV and anti-Yersinia IgG. The new method was characterized regarding signal reproducibility and specificity. The analytical performance was compared with in-house enzyme-linked immunosorbent assay (ELISA) and a LIA based on recomLine HEV (Mikrogen) or the ELISA test kit pigtype Yersinia Ab (Qiagen), respectively. The immunochip revealed the highest analytical sensitivity and was processed in 9 min automatically on the MCR 3. A comparative screening of swine serum samples from Bavarian slaughterhouses regarding anti-HEV and anti-Yersinia IgG seroprevalence was conducted. By using the LIA, 78% of the sera were tested positive for HEV antibodies. The immunochip and the ELISA identified anti-HEV IgG in 96% and 93% of the tested samples using the O2C-gt1 and O2C-gt3 rAg, respectively. The screening for anti-Yersinia IgG resulted in 86% positive findings using the immunochip and 57% and 48% for the ELISA methods, respectively, indicating a higher detection capability of the new method. Serum samples of slaughtered pigs could be analyzed faster and in an automated way on the microarray analysis platform MCR 3 which shows the great potential of the new immunochip assay format for multiplexed serum screening purposes.
Collapse
Affiliation(s)
- Klaus Wutz
- Chair for Analytical Chemistry and Institute of Hydrochemistry, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oracz J, Nebesny E, Zyżelewicz D. New trends in quantification of acrylamide in food products. Talanta 2011; 86:23-34. [PMID: 22063508 DOI: 10.1016/j.talanta.2011.08.066] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/11/2011] [Accepted: 08/28/2011] [Indexed: 12/28/2022]
Abstract
Methods applied in acrylamide quantification in foods have been reviewed in this paper. Novel analytical techniques like capillary electrophoresis (CE), immunoenzymatic test (ELISA) and electrochemical biosensors, which can replace traditional methods like high performance liquid chromatography (HPLC) and gas chromatography (GC) were presented. Short time of analysis and high resolution power of electrophoretic techniques caused that they became routinely used in food analysis apart from high performance liquid chromatography and gas chromatography. Application of modern chromatography methods like ultra performance liquid chromatography (UPLC) in acrylamide quantification considerably shortened the time of analysis and decreased the consumption of indispensable reagents. The most promising approaches to acrylamide quantification in foods are electrochemical biosensors and immunoenzymatic tests. In contrast to chromatography and electrophoretic methods they require neither expensive equipment nor time consuming sample preparation and allow for fast screening of numerous samples without the usage of sophisticated apparatuses. Because of many advantages such as miniaturization, rapid and simple analysis, and high sensitivity and selectivity, biosensors are thought to replace conventional methods of acrylamide quantification in food.
Collapse
Affiliation(s)
- Joanna Oracz
- Faculty of Biotechnology and Food Sciences, Technical University of Lodz, 4/10 Stefanowskiego Street, 90-924 Lodz, Poland.
| | | | | |
Collapse
|
7
|
Karsunke XYZ, Pschenitza M, Rieger M, Weber E, Niessner R, Knopp D. Screening and characterization of new monoclonal anti-benzo[a]pyrene antibodies using automated flow-through microarray technology. J Immunol Methods 2011; 371:81-90. [PMID: 21723870 DOI: 10.1016/j.jim.2011.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/08/2011] [Accepted: 06/16/2011] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, which can cause cancer in humans. The maximum tolerable limit of benzo[a]pyrene (B[a]P) in drinking water was set to 10 ng/L by the European Commission (Council Directive 98/83/EC), because of its highly carcinogenic and mutagenic effect on humans. In the present investigation, mice were immunized with B[a]P-bovine serum albumin conjugates and 110 generated hybridoma cell lines screened by different techniques to identify clones that produce anti-B[a]P antibodies. Subsequently, a new automated flow-through biochip noncompetitive direct chemiluminescence immunoassay (CLEIA) was compared with conventional indirect and direct enzyme-linked immunosorbent assays (ELISAs). It was demonstrated that the microchip-based screening method compared to ELISA was fast and very sensitive with use of only nanoliter volumes of supernatant. Forty clones could be evaluated in less than 5 min. Six high affinity monoclonal antibodies with different cross-reactivities (CR) for individual PAHs were identified by the chip-based assay and indirect microtiter plate ELISA. In comparison, the direct ELISA in the microtiter plate failed to identify three of these clones. The four antibodies with the highest affinity had half maximum inhibitory concentrations (IC(50) values) between 0.31 and 0.92 μg/L for B[a]P. Affinity constants of these four antibodies were determined by surface plasmon resonance using a water soluble B[a]P-peptide. The observed CR pattern of the four monoclonal antibodies for 16 tested PAHs was quite different. Only one specific antibody for B[a]P was observed, while others were more suitable for class-specific PAH determination.
Collapse
Affiliation(s)
- Xaver Y Z Karsunke
- Institute of Hydrochemistry, Technische Universität München, Marchioninistr. 17, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0548-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|