1
|
Yotsumoto M, Fujita R, Matsuo M, Nakanishi S, Denda M, Nakata S. Effects of the Molecular Structure of Malodor Substances and Their Masking on 1,2-Dioleoyl- sn-glycero-3-phosphocholine Molecular Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6878-6883. [PMID: 38501274 DOI: 10.1021/acs.langmuir.3c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Certain odors have been shown not only to cause health problems and stress but also to affect skin barrier function. Therefore, it is important to understand olfactory masking to develop effective fragrances to mask malodors. However, olfaction and olfactory masking mechanisms are not yet fully understood. To understand the mechanism of the masking effect that has been studied, the responses of several target substance (TS) molecules-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed molecular layers to odorant (OD) molecules were examined as a simple experimental model of epithelial cellular membranes injured by TS molecules. Here, we examined trans-2-nonenal, 1-nonanal, trans-2-decenal, and 1-decanal as TS molecules to clarify the effects of double bonds and hydrocarbon chain lengths on the phospholipid molecular layer. In addition, benzaldehyde and cyclohexanecarboxaldehyde were utilized as OD molecules to clarify the masking effect of the aromatic ring. Surface pressure (Π)-area (A) isotherms were measured to clarify the adsorption or desorption of TS and OD molecules on the DOPC molecular layer. In addition, Fourier transform infrared spectroscopy was performed to clarify the interactions among DOPC, TS, and OD molecules. We found that TS molecules with and without double bonds had different effects on the DOPC molecular layer and that molecules with shorter chain lengths had greater effects on the DOPC molecular layer. Furthermore, OD molecules with aromatic rings counteracted the effects of the TS molecules. On the basis of this research, not only a detailed mechanism by which odor molecules affect lipid membranes without mediating olfactory receptors is elucidated but also more effective OD molecules with masking effects are proposed.
Collapse
Affiliation(s)
- Mai Yotsumoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Risa Fujita
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, 1-2-11 Takashima-cho, Nishi-ku, Yokohama, Kanagawa 220-0011, Japan
| | - Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, 8F High-Rise Wing, Nakano Campus, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
2
|
Kawai F. Somatic ion channels and action potentials in olfactory receptor cells and vomeronasal receptor cells. J Neurophysiol 2024; 131:455-471. [PMID: 38264787 DOI: 10.1152/jn.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.
Collapse
Affiliation(s)
- Fusao Kawai
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
3
|
Fujita R, Yotsumoto M, Yamaguchi Y, Matsuo M, Fukuhara K, Takahashi O, Nakanishi S, Denda M, Nakata S. Masking of a malodorous substance on 1,2-dioleoyl-sn-glycero-3-phosphocholine molecular layer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Denda M, Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp Dermatol 2021; 31:459-474. [PMID: 34726302 DOI: 10.1111/exd.14494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/22/2023]
Abstract
It was long considered that the role of epidermal keratinocytes is solely to construct a water-impermeable protective membrane, the stratum corneum, at the uppermost layer of the skin. However, in the last two decades, it has been found that keratinocytes contain multiple sensory systems that detect environmental changes, including mechanical stimuli, sound, visible radiation, electric fields, magnetic fields, temperature and chemical stimuli, and also a variety of receptor molecules associated with olfactory or taste sensation. Moreover, neurotransmitters and their receptors that play crucial roles in the brain are functionally expressed in keratinocytes. Recent studies have demonstrated that excitation of keratinocytes can induce sensory perception in the brain. Here, we review the sensory and information processing capabilities of keratinocytes. We discuss the possibility that epidermal keratinocytes might represent the earliest stage in the development of the brain during the evolution of vertebrates.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
5
|
Nakanishi S, Makita M, Denda M. Effects of trans-2-nonenal and olfactory masking odorants on proliferation of human keratinocytes. Biochem Biophys Res Commun 2021; 548:1-6. [PMID: 33631667 DOI: 10.1016/j.bbrc.2021.02.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022]
Abstract
Malodorous compounds induce stress responses, mood changes, an increase of skin conductance, activation of the sympathetic nervous system and other physiological changes, and it has been suggested that sensing malodors could provide warning of danger to health. Furthermore, the human body secretes various malodorous compounds as waste products of metabolism, including trans-2-nonenal ((E)-2-nonenal), the amount of which increases with aging. In the present study, we examined the effects of some endogenous malodorous compounds ((E)-2-nonenal, nonanal, pentanal, hexanal, hexanoic acid, hexylamine and isovaleric acid) on cultured human keratinocytes. (E)-2-Nonenal decreased the viability and promoted apoptosis of cultured keratinocytes. It also reduced the thickness and the number of proliferative cells in a three-dimensional epidermal equivalent model. Co-application of masking odorants (dihydromycenol, benzaldehyde, linalool, phenethyl alcohol, benzyl acetate and anisaldehyde), but not non-masking odorants (1,8-cineol, β-damascone, and o-t-butylcyclohexyl acetate), reduced the effect of (E)-2-nonenal on keratinocyte proliferation, and restored the thickness and number of proliferative cells in a three-dimensional epidermal equivalent model.
Collapse
Affiliation(s)
| | - Mio Makita
- Shiseido Global Innovation Center, Yokohama, Japan
| | | |
Collapse
|
6
|
Zhuang L, Wei X, Jiang N, Yuan Q, Qin C, Jiang D, Liu M, Zhang Y, Wang P. A biohybrid nose for evaluation of odor masking in the peripheral olfactory system. Biosens Bioelectron 2020; 171:112737. [PMID: 33080464 DOI: 10.1016/j.bios.2020.112737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
Olfaction is a synthetic sense in which odor mixtures elicit emergent perceptions at the expense of perceiving the individual components. The most common result of mixing two odors is masking one component by another. However, there is lack of analytical techniques for measuring the sense of smell, which is mediated by cross-odorant interactions. Here, we propose a biohybrid nose for objective and quantitative evaluation of malodor masking efficiency of perfumed products. This biohybrid nose is constructed by integrating mammalian olfactory epithelium with microelectrode array chip to read out the olfactory information as electrical signal from multiple tissue sites. The intrinsic odor response of olfactory epithelium is found to be represented by widespread spatiotemporal oscillatory activity. The masking efficiency of fragrance is quantified by calculating the relative difference between the malodor and the binary mixture (malodor + fragrance) response patterns. Results indicate that masking efficiency of fragrance is concentration-dependent, whereas completely masking may occurs when fragrance is employed at a concentration 2-3 orders of magnitude higher than malodor. This study demonstrates for the first time that capitalizing on the biological sense of smell to create biohybrid system provides an effective technique to resolve more complex biosensing-related issues such as odor interactions in mixtures.
Collapse
Affiliation(s)
- Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanning Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
7
|
Abstract
2,4,6-Trichloroanisole (TCA) is a well-known, potent off-flavour compound present in various foods and beverages. TCA has been hypothesised to be a universal cause of flavour loss experienced in daily life. Here, however, we show that titres for the suppression of olfactory transducer channels caused by low-quality bananas are much higher than those for that caused by the TCA itself contained in the banana. We resurveyed other components of low-quality bananas and found that bananas also contain an insecticide (chlorpyrifos), and that it suppresses olfactory transducer channels. Other insecticides also suppressed olfactory transducer channels. Hence, even after passing safety examinations, certain insecticides may decrease the quality of foods and beverages by reducing their intrinsic scents.
Collapse
|
8
|
2,4,6-trichloroanisole is a potent suppressor of olfactory signal transduction. Proc Natl Acad Sci U S A 2013; 110:16235-40. [PMID: 24043819 DOI: 10.1073/pnas.1300764110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the sensitivity of single olfactory receptor cells to 2,4,6-trichloroanisole (TCA), a compound known for causing cork taint in wines. Such off-flavors have been thought to originate from unpleasant odor qualities evoked by contaminants. However, we here show that TCA attenuates olfactory transduction by suppressing cyclic nucleotide-gated channels, without evoking odorant responses. Surprisingly, suppression was observed even at extremely low (i.e., attomolar) TCA concentrations. The high sensitivity to TCA was associated with temporal integration of the suppression effect. We confirmed that potent suppression by TCA and similar compounds was correlated with their lipophilicity, as quantified by the partition coefficient at octanol/water boundary (pH 7.4), suggesting that channel suppression is mediated by a partitioning of TCA into the lipid bilayer of plasma membranes. The rank order of suppression matched human recognition of off-flavors: TCA equivalent to 2,4,6-tribromoanisole, which is much greater than 2,4,6-trichlorophenol. Furthermore, TCA was detected in a wide variety of foods and beverages surveyed for odor losses. Our findings demonstrate a potential molecular mechanism for the reduction of flavor.
Collapse
|
9
|
Matsumura K, Matsumoto M, Kurahashi T, Takeuchi H. Recordings from cultured newt olfactory receptor cells. Zoolog Sci 2012; 29:340-5. [PMID: 22559969 DOI: 10.2108/zsj.29.340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Freshly dissociated olfactory receptor cells (ORCs) are commonly used in electrophysiological research investigations of the physicochemical mechanisms of olfactory signal transduction. Because the morphology of cultured cells clearly becomes worse over time, the ORCs are examined traditionally within several days after dissociation. However, there has been a major concern that cells are affected soon after dissociation. To gain a better understanding of the reliability of data obtained from solitary cells, we obtained electrical data during the lifetime of single ORCs dissociated from the newt. The time course for the deterioration could be revealed by monitoring the membrane properties during culture. Although the number of living cells that were identified by trypan blue extrusion declined day by day, the remaining cells retained morphology and their fundamental electrical features until day 19. In some cells, the cilia and dendrite were observed until day 21, and the bipolar morphology until day 31. The fundamental features of cell excitation were maintained during culture without showing remarkable changes when they retained morphological features. The results suggest that electrical properties of cells are almost unchanged within several days. Furthermore, the dissociated newt ORCs can be used for several weeks that are almost comparable to the intrinsic lifetime of the ORCs in vivo.
Collapse
Affiliation(s)
- Kyohei Matsumura
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | |
Collapse
|