1
|
Seldeen KL, Pang M, Leiker MM, Bard JE, Rodríguez-Gonzalez M, Hernandez M, Sheridan Z, Nowak N, Troen BR. Chronic vitamin D insufficiency impairs physical performance in C57BL/6J mice. Aging (Albany NY) 2019; 10:1338-1355. [PMID: 29905532 PMCID: PMC6046224 DOI: 10.18632/aging.101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Vitamin D insufficiency (serum 25-OH vitamin D < 30 ng/ml) affects 70-80% of the general population, yet the long-term impacts on physical performance and the progression of sarcopenia are poorly understood. We therefore followed 6-month-old male C57BL/6J mice (n=6) consuming either sufficient (STD, 1000 IU) or insufficient (LOW, 125 IU) vitamin D3/kg chow for 12 months (equivalent to 20-30 human years). LOW supplemented mice exhibited a rapid decline of serum 25-OH vitamin D levels by two weeks that remained between 11-15 ng/mL for all time points thereafter. After 12 months LOW mice displayed worse grip endurance (34.6 ± 14.1 versus 147.5 ± 50.6 seconds, p=0.001), uphill sprint speed (16.0 ± 1.0 versus 21.8 ± 2.4 meters/min, p=0.0007), and stride length (4.4 ± 0.3 versus 5.1 ± 0.3, p=0.002). LOW mice also showed less lean body mass after 8 months (57.5% ± 5.1% versus 64.5% ± 4.0%, p=0.023), but not after 12 months of supplementation, as well as greater protein expression of atrophy pathway gene atrogin‑1. Additionally, microRNA sequencing revealed differential expression of mIR‑26a in muscle tissue of LOW mice. These data suggest chronic vitamin D insufficiency may be an important factor contributing to functional decline and sarcopenia.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Manhui Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Merced M Leiker
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Maria Rodríguez-Gonzalez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Mireya Hernandez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Zachary Sheridan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Norma Nowak
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Ono Y, Miyakoshi N, Kasukawa Y, Nagasawa H, Tsuchie H, Akagawa M, Nagahata I, Yuasa Y, Sato C, Shimada Y. Effects of eldecalcitol and ibandronate on secondary osteoporosis and muscle wasting in rats with adjuvant-induced arthritis. Osteoporos Sarcopenia 2019; 4:128-133. [PMID: 30775555 PMCID: PMC6372828 DOI: 10.1016/j.afos.2018.11.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/27/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovium, progressive erosion of the articular cartilage, and joint destruction. RA also causes secondary osteoporosis and muscle wasting. We investigated the effects of ibandronate (IBN), a bisphosphonate; eldecalcitol (ELD), an active vitamin D3 derivative; and combination treatment with both agents on secondary osteoporosis and muscle wasting using adjuvant-induced arthritis rats. Methods Arthritis was induced in 8-week-old male Lewis rats. Rats were randomized into 4 treatment groups and an untreated normal control group: IBN (subcutaneously, once every 2 weeks, 10 μg/kg), ELD (orally, once daily, 30 ng/kg/day), IBN + ELD, vehicle, and control. Paw thickness measurements were performed for evaluation of arthritis. The femur was scanned using dual-energy X-ray absorptiometry. Cross-sectional areas of left tibialis and anterior muscle fibers and the expression of MuRF1, atrogin-1, MyoD, and myogenin in the gastrocnemius muscle were measured to evaluate muscle wasting. Results IBN and/or ELD increased bone mineral density (BMD) in the femur. In addition, there was an additive effect of combination treatment compared with single treatments for BMD. However, IBN and/or ELD did not inhibit muscle wasting in adjuvant-induced arthritis rats. Conclusions Combination treatment with IBN and ELD may be effective for secondary osteoporosis associated with RA. Other treatments are necessary for muscle wasting associated with RA. Studies in humans are needed to confirm these findings.
Collapse
Affiliation(s)
- Yuichi Ono
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Nagasawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Manabu Akagawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Itsuki Nagahata
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yusuke Yuasa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Chiaki Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
3
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
van der Meijden K, Bravenboer N, Dirks NF, Heijboer AC, den Heijer M, de Wit GMJ, Offringa C, Lips P, Jaspers RT. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy. J Cell Physiol 2016; 231:2517-28. [PMID: 27018098 PMCID: PMC5111790 DOI: 10.1002/jcp.25388] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/23/2016] [Indexed: 12/14/2022]
Abstract
An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- K van der Meijden
- Department of Internal Medicine/Endocrinology, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - N Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - N F Dirks
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - A C Heijboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - M den Heijer
- Department of Internal Medicine/Endocrinology, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - G M J de Wit
- Laboratory for Myology, MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C Offringa
- Laboratory for Myology, MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - P Lips
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - R T Jaspers
- Laboratory for Myology, MOVE Research Institute Amsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ray AD, Personius KE, Williamson DL, Dungan CM, Dhillon SS, Hershberger PA. Vitamin D3 intake modulates diaphragm but not peripheral muscle force in young mice. J Appl Physiol (1985) 2016; 120:1124-31. [PMID: 26968027 DOI: 10.1152/japplphysiol.00643.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
Recent data support an important role for vitamin D in respiratory health. We tested the hypothesis that dietary vitamin D3 (VD3) intake modulates diaphragm (DIA) strength. Four-week-old female A/J mice (n = 10/group) were randomized to receive diets containing 100 IU VD3/kg (low), 1,000 IU VD3/kg (reference), or 10,000 IU VD3/kg (pharmacologic). After 6 wk of dietary intervention, plasma 25-hydroxyvitamin D3 (25D3) levels, DIA and extensor digitorum longus (EDL) in vitro contractile properties, and fiber cross-sectional area (CSA) were measured. Myosin heavy chain (MHC) composition and Akt/Foxo3A growth signaling were studied in the DIA and tibialis anterior. Mice fed the low, reference, and pharmacologic diets had average 25D3 levels of 7, 21, and 59 ng/ml, respectively. Maximal DIA force, twitch force, and fiber CSA were reduced 26%, 28%, and 10% (P < 0.01), respectively, in mice receiving the low-VD3 diet compared with the reference and pharmacologic diets. EDL force parameters were unaltered by diet. Effects of VD3 intake on DIA force were not observed in mice that began dietary intervention at 12 wk of age. VD3 intake did not alter the MHC composition of the DIA, indicating that decreases in force and CSA in young mice were not due to a switch in fiber type. Paradoxically, low VD3 intake was associated with activation of anabolic signaling in muscle (hyperphosphorylation of Akt and Foxo3A and decreased expression of autophagy marker LC3). These studies identify a potential role of dietary VD3 in regulating DIA development and insulin sensitivity.
Collapse
Affiliation(s)
- Andrew D Ray
- Department of Rehabilitation Science, University at Buffalo, Buffalo, New York;
| | | | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Samjot S Dhillon
- Department of Medicine, Thoracic Oncology, Roswell Park Cancer Institute, Buffalo, New York; and
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
6
|
|
7
|
FURRER REGULA, DE HAAN ARNOLD, BRAVENBOER NATHALIE, KOS DORIEN, LIPS PAUL, JASPERS RICHARDT. Effects of Concurrent Training on Oxidative Capacity in Rat Gastrocnemius Muscle. Med Sci Sports Exerc 2013; 45:1674-83. [DOI: 10.1249/mss.0b013e31828fc65f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training. BIOMED RESEARCH INTERNATIONAL 2013; 2013:935671. [PMID: 23509812 PMCID: PMC3581157 DOI: 10.1155/2013/935671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/21/2012] [Indexed: 11/18/2022]
Abstract
Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task specifically, we hypothesised that the adaptive responses to peak power training were unaffected by additional endurance training. Thirty rats were subjected to either no training (control), peak power training (PT), or both peak power and endurance training (PET), which was performed on a treadmill 5 days per week for 6 weeks. Maximal running velocity increased 13.5% throughout the training and was similar in both training groups. Only after PT, GM maximal force was 10% higher than that of the control group. In the low oxidative compartment, mRNA levels of myostatin and MuRF-1 were higher after PT as compared to those of control and PET groups, respectively. Phospho-S6 ribosomal protein levels remained unchanged, suggesting that the elevated myostatin levels after PT did not inhibit mTOR signalling. In conclusion, even by using task-specific recruitment of the compartmentalized rat GM, additional endurance training interfered with the adaptive response of peak power training and attenuated the increase in maximal force after power training.
Collapse
|
9
|
Szulc P, Schoppet M, Goettsch C, Rauner M, Dschietzig T, Chapurlat R, Hofbauer LC. Endocrine and clinical correlates of myostatin serum concentration in men--the STRAMBO study. J Clin Endocrinol Metab 2012; 97:3700-8. [PMID: 22802085 DOI: 10.1210/jc.2012-1273] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT Myostatin is expressed mainly in skeletal muscle cells and acts as an inhibitor of muscle growth and differentiation. However, data on the determinants of serum myostatin concentrations in humans are limited. OBJECTIVE The aim of the study was to assess the correlates of serum myostatin concentrations in men. DESIGN We conducted a cross-sectional analysis of the STRAMBO cohort. SETTING Men holding private health insurance coverage with Mutuelle de Travailleurs de la Région Lyonnaise were included in the study. PARTICIPANTS A total of 1121 male volunteers aged 20-87 yr participated in the study. INTERVENTIONS Nonfasting blood samples were collected. MAIN OUTCOME MEASURES We measured the association of the investigated variables with circulating myostatin levels. RESULTS Serum myostatin levels increased slightly with age until 57 yr and then decreased. Circulating myostatin levels showed circannual variation, with the highest concentration in spring. In men older than 57 yr, serum myostatin levels decreased across increasing quartiles of body mass index and of total central and peripheral fat mass (P<0.05 to <0.001). Serum myostatin levels were positively correlated with serum levels of 25-hydroxycholecalciferol (25OHD), even after adjustment for season. Average myostatin levels were 0.47 sd higher in men with 25OHD above 40 ng/ml, compared with those with 25OHD below 20 ng/ml (P<0.05). Current smokers had lower myostatin concentration. Neither current physical activity nor serum levels of PTH, testosterone, and 17β-estradiol were associated with myostatin concentrations. CONCLUSIONS In men, circulating myostatin levels show seasonal changes and are associated with age, body mass index, fat mass, smoking, and 25OHD levels.
Collapse
Affiliation(s)
- Pawel Szulc
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, Hôpital Edouard Herriot, Pavillon F, Place d'Arsonval, 69437 Lyon, France.
| | | | | | | | | | | | | |
Collapse
|