1
|
Ino K, Wachi M, Utagawa Y, Konno A, Takinoue M, Abe H, Shiku H. Scanning electrochemical microscopy for determining oxygen consumption rates of cells in hydrogel fibers fabricated using an extrusion 3D bioprinter. Anal Chim Acta 2024; 1304:342539. [PMID: 38637037 DOI: 10.1016/j.aca.2024.342539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Three-dimensional (3D)-cultured cells have attracted the attention of researchers in tissue engineering- and drug screening-related fields. Among them, 3D cellular fibers have attracted significant attention because they can be stacked to prepare more complex tissues and organs. Cellular fibers are widely fabricated using extrusion 3D bioprinters. For these applications, it is necessary to evaluate cellular activities, such as the oxygen consumption rate (OCR), which is one of the major metabolic activities. We previously reported the use of scanning electrochemical microscopy (SECM) to evaluate the OCRs of cell spheroids. However, the SECM approach has not yet been applied to hydrogel fibers prepared using the bioprinters. To the best of our knowledge, this is the first study to evaluate the OCR of cellular fibers printed by extrusion 3D bioprinters. First, the diffusion theory was discussed to address this issue. Next, diffusion models were simulated to compare realistic models with this theory. Finally, the OCRs of MCF-7 cells in the printed hydrogel fibers were evaluated as a proof of concept. Our proposed approach could potentially be used to evaluate the OCRs of tissue-engineered fibers for organ transplantation and drug screening using in-vitro models.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Mana Wachi
- School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - An Konno
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-aza Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
2
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [PMID: 37555905 DOI: 10.1007/s13346-023-01392-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Phenylketonuria (PKU) is a rare inherited metabolic disease characterized by phenylalanine hydroxylase enzyme deficiency. In PKU patients, coenzyme Q10 (CoQ10) levels were found low. Therefore, we focused on the modification of CoQ10 to load the micelles and increase entry of micelles into the cell and mitochondria, and it is taking a part in ATP turnover. Micelles had produced by comparing two different production methods (thin-film layer and direct-dissolution), and characterization studies were performed (zeta potential, size, and encapsulation efficiency). Then, L-arginine (LARG) and poly-arginine (PARG) were incorporated with the micelles for subsequential release and PKU cell studies. The effects of these components on intracellular uptake and their use in the cellular cycle were analyzed by ELISA, Western blot, membrane potential measurement, and flow cytometry methods. In addition, both effects of LARG and PARG micelles on pharmacokinetics at the cellular level and their cell binding rate were determined. The thin-film method was found superior in micelle preparation. PARG/LARG-modified micelles showed sustained release. In the cellular and mitochondrial uptake of CoQ10, CoQ10-micelle + PARG > CoQ10-micelle + LARG > CoQ10-micelle > CoQ10 was found. This increased localization caused lowering of oxygen consumption rates, but maintaining mitochondrial membrane potential. The study results had showed that besides micelle formulation, PARG and LARG are effective in cellular and mitochondrial targeting.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA.
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA
| | - Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Li A, Qin Y, Zhang Y, Zhen X, Gong G. Evaluation of Oxygen Consumption Rates In Situ. Methods Mol Biol 2024; 2755:215-226. [PMID: 38319581 DOI: 10.1007/978-1-0716-3633-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
An analysis of the mitochondrial respiration function represented by the oxygen consumption rate is necessary to assess mitochondrial bioenergetics and redox function. This protocol describes two alternative techniques to evaluate mitochondrial respiration function in situ: (1) measure oxygen consumption rates via an electrode; (2) measure oxygen consumption rates via a seahorse instrument. These in situ approaches provide more physiological access to mitochondria to evaluate mitochondrial respiration function in a relatively integrated cellular system.
Collapse
Affiliation(s)
- Anqi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ying Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqun Zhen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Lee YT, Tan YJ, Oon CE. BZD9L1 Differentially Regulates Sirtuins in Liver-Derived Cells by Inducing Reactive Oxygen Species. Biomedicines 2023; 11:3059. [PMID: 38002059 PMCID: PMC10669747 DOI: 10.3390/biomedicines11113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Growing evidence has highlighted that mitochondrial dysfunction contributes to drug-induced toxicities and leads to drug attrition and post-market withdrawals. The acetylation or deacetylation of mitochondrial proteins can affect mitochondrial functions as the cells adapt to various cellular stresses and other metabolic challenges. SIRTs act as critical deacetylases in modulating mitochondrial function in response to drug toxicity, oxidative stress, reactive oxygen species (ROS), and energy metabolism. We previously showed that a recently characterised SIRT inhibitor (BZD9L1) is non-toxic in rodents in a short-term toxicity evaluation. However, the impact of BZD9L1 on mitochondrial function is unknown. This work aims to determine the effects of BZD9L1 on mitochondrial function in human normal liver and kidney-derived cell lines using the Agilent Seahorse Cell Mito Stress Test to complement our short-term toxicity evaluations in vivo. The Mito Stress assay revealed that BZD9L1 could potentially trigger oxidative stress by inducing ROS, which promotes proton leak and reduces coupling efficiency in liver-derived THLE cells. However, the same was not observed in human kidney-derived HEK293 cells. Interestingly, BZD9L1 had no impact on SIRT3 protein expression in both cell lines but affected SOD2 and its acetylated form at 72 h in THLE cells, indicating that BZD9L1 exerted its effect through SIRT3 activity rather than protein expression. In contrast, BZD9L1 reduced SIRT1 protein expression and impacted the p53 protein differently in both cell lines. Although BZD9L1 did not affect the spare respiratory capacity in vitro, these findings call for further validation of mitochondrial function through assessment of other mitochondrial parameters to evaluate the safety of BZD9L1.
Collapse
Affiliation(s)
| | | | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (Y.T.L.); (Y.J.T.)
| |
Collapse
|
5
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
6
|
Takahashi E, Yamaoka Y. On the Mechanism of Sustained Mitochondrial Membrane Potential Without Functioning Complex IV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:367-372. [PMID: 36527664 DOI: 10.1007/978-3-031-14190-4_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In intact mitochondria, the transport of electrons, respiration and generation of proton gradients across the inner membrane (proton motive force) are mutually coupled, according to Peter Mitchell's hypothesis on oxidative phosphorylation. Thus, the inhibition of electron transport at either respiratory complex III or IV in the electron transport chain leads to failure in producing proton motive force along with the abolition of respiration. Here, we determined the mitochondrial membrane potential (MMP), as a measure of proton motive force, and cellular respiration in various cultured cells and demonstrated that inhibition of complex IV by KCN abolished mitochondrial respiration while MMP was sustained. These results are unexpected and appear incompatible with Mitchell's chemiosmotic hypothesis.
Collapse
|
7
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|