1
|
Abe C, Katayama C, Horii K, Ogawa B, Ohbayashi K, Iwasaki Y, Nin F, Morita H. Hypergravity load-induced hyperglycemia occurs due to hypothermia and increased plasma corticosterone level in mice. J Physiol Sci 2022; 72:18. [PMID: 35915429 DOI: 10.1186/s12576-022-00844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Hypothermia has been observed during hypergravity load in mice and rats. This response is beneficial for maintaining blood glucose level, although food intake decreases. However, saving glucose is not enough to maintain blood glucose level during hypergravity load. In this study, we examined the contribution of humoral factors related to glycolysis in maintaining blood glucose level in a 2 G environment. Increased plasma corticosterone levels were observed in mice with intact peripheral vestibular organs, but not in mice with vestibular lesions. Plasma glucagon levels did not change, and decrease in plasma adrenaline levels was observed in mice with intact peripheral vestibular organs. Accordingly, it is possible that increase in plasma corticosterone level and hypothermia contribute to prevent hypoglycemia in a 2 G environment.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Chikako Katayama
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuhiro Horii
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Bakushi Ogawa
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Fumiaki Nin
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
2
|
Bonnefoy J, Ghislin S, Beyrend J, Coste F, Calcagno G, Lartaud I, Gauquelin-Koch G, Poussier S, Frippiat JP. Gravitational Experimental Platform for Animal Models, a New Platform at ESA's Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models. Int J Mol Sci 2021; 22:2961. [PMID: 33803957 PMCID: PMC7998548 DOI: 10.3390/ijms22062961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)'s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures.
Collapse
Affiliation(s)
- Julie Bonnefoy
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Stéphanie Ghislin
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Jérôme Beyrend
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Florence Coste
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Gaetano Calcagno
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| | - Isabelle Lartaud
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | | | - Sylvain Poussier
- Animalerie du Campus Biologie Santé, ACBS, Université de Lorraine, F-54000 Nancy, France; (J.B.); (I.L.); (S.P.)
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France; (S.G.); (F.C.); (G.C.)
| |
Collapse
|
3
|
Study of mouse behavior in different gravity environments. Sci Rep 2021; 11:2665. [PMID: 33514775 PMCID: PMC7846607 DOI: 10.1038/s41598-021-82013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022] Open
Abstract
Many experiments have analyzed the effect of the space environment on various organisms. However, except for the group-rearing of mice in space, there has been little information on the behavior of organisms in response to gravity changes. In this study, we developed a simple Active Inactive Separation (AIS) method to extract activity and inactivity in videos obtained from the habitat cage unit of a space experiment. This method yields an activity ratio as a ratio of ‘activity’ within the whole. Adaptation to different gravitational conditions from 1g to hypergravity (HG) and from microgravity (MG) to artificial 1g (AG) was analyzed based on the amount of activity to calculate the activity ratio and the active interval. The result for the activity ratios for the ground control experiment using AIS were close to previous studies, so the effectiveness of this method was indicated. In the case of changes in gravity from 1g to HG, the ratio was low at the start of centrifugation, recovered sharply in the first week, and entered a stable period in another week. The trend in the AG and HG was the same; adapting to different gravity environments takes time.
Collapse
|
4
|
Shimoide T, Kawao N, Morita H, Ishida M, Takafuji Y, Kaji H. Roles of Olfactomedin 1 in Muscle and Bone Alterations Induced by Gravity Change in Mice. Calcif Tissue Int 2020; 107:180-190. [PMID: 32462291 DOI: 10.1007/s00223-020-00710-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Microgravity causes both muscle and bone loss. Although we previously revealed that gravity change influences muscle and bone through the vestibular system in mice, its detailed mechanism has not been elucidated. In this study, we investigated the roles of olfactomedin 1 (OLFM1), whose expression was upregulated during hypergravity in the soleus muscle, in mouse bone cells. Vestibular lesion significantly blunted OLFM1 expression in the soleus muscle and serum OLFM1 levels enhanced by hypergravity in mice. Moreover, a phosphatidylinositol 3-kinase inhibitor antagonized shear stress-enhanced OLFM1 expression in C2C12 myotubes. As for the effects of OLFM1 on bone cells, OLFM1 inhibited osteoclast formation from mouse bone marrow cells and mouse preosteoclastic RAW264.7 cells. Moreover, OLFM1 suppressed RANKL expression and nuclear factor-κB signaling in mouse osteoblasts. Serum OLFM1 levels were positively related to OLFM1 mRNA levels in the soleus muscle and trabecular bone mineral density of mice. In conclusion, we first showed that OLFM1 suppresses osteoclast formation and RANKL expression in mouse cells.
Collapse
Affiliation(s)
- Takeshi Shimoide
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
5
|
Morita H, Kaji H, Ueta Y, Abe C. Understanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environment. J Physiol Sci 2020; 70:17. [PMID: 32169037 PMCID: PMC7069930 DOI: 10.1186/s12576-020-00744-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
The peripheral vestibular organs are sensors for linear acceleration (gravity and head tilt) and rotation. Further, they regulate various body functions, including body stability, ocular movement, autonomic nerve activity, arterial pressure, body temperature, and muscle and bone metabolism. The gravitational environment influences these functions given the highly plastic responsiveness of the vestibular system. This review demonstrates that hypergravity or microgravity induces changes in vestibular-related physiological functions, including arterial pressure, muscle and bone metabolism, feeding behavior, and body temperature. Hopefully, this review contributes to understanding how human beings can adapt to a new gravitational environment, including the moon and Mars, in future.
Collapse
Affiliation(s)
- Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osakasayama, 589-8511, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
6
|
Tominari T, Ichimaru R, Taniguchi K, Yumoto A, Shirakawa M, Matsumoto C, Watanabe K, Hirata M, Itoh Y, Shiba D, Miyaura C, Inada M. Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice. Sci Rep 2019; 9:6614. [PMID: 31036903 PMCID: PMC6488638 DOI: 10.1038/s41598-019-42829-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/08/2019] [Indexed: 11/15/2022] Open
Abstract
Spaceflight is known to induce severe systemic bone loss and muscle atrophy of astronauts due to the circumstances of microgravity. We examined the influence of artificially produced 2G hypergravity on mice for bone and muscle mass with newly developed centrifuge device. We also analyzed the effects of microgravity (mostly 0G) and artificial produced 1G in ISS (international space station) on mouse bone mass. Experiment on the ground, the bone mass of humerus, femur and tibia was measured using micro-computed tomography (μCT), and the all bone mass was significantly increased in 2G compared with 1G control. In tibial bone, the mRNA expression of bone formation related genes such as Osx and Bmp2 was elevated. The volume of triceps surae muscle was also increased in 2G compared with 1G control, and the mRNA expression of myogenic factors such as Myod and Myh1 was elevated by 2G. On the other hand, microgravity in ISS significantly induced the loss of bone mass on humerus and tibia, compared with artificial 1G induced by centrifugation. Here, we firstly report that bone and muscle mass are regulated by the gravity with loaded force in both of positive and negative on the ground and in the space.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Ryota Ichimaru
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Keita Taniguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kenta Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshifumi Itoh
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|