1
|
Lu L, Kong WY, Zhang J, Firdaus F, Wells JW, Stephenson RJ, Toth I, Skwarczynski M, Cruz JLG. Utilizing murine dendritic cell line DC2.4 to evaluate the immunogenicity of subunit vaccines in vitro. Front Immunol 2024; 15:1298721. [PMID: 38469294 PMCID: PMC10925716 DOI: 10.3389/fimmu.2024.1298721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Subunit vaccines hold substantial promise in controlling infectious diseases, due to their superior safety profile, specific immunogenicity, simplified manufacturing processes, and well-defined chemical compositions. One of the most important end-targets of vaccines is a subset of lymphocytes originating from the thymus, known as T cells, which possess the ability to mount an antigen-specific immune response. Furthermore, vaccines confer long-term immunity through the generation of memory T cell pools. Dendritic cells are essential for the activation of T cells and the induction of adaptive immunity, making them key for the in vitro evaluation of vaccine efficacy. Upon internalization by dendritic cells, vaccine-bearing antigens are processed, and suitable fragments are presented to T cells by major histocompatibility complex (MHC) molecules. In addition, DCs can secrete various cytokines to crosstalk with T cells to coordinate subsequent immune responses. Here, we generated an in vitro model using the immortalized murine dendritic cell line, DC2.4, to recapitulate the process of antigen uptake and DC maturation, measured as the elevation of CD40, MHC-II, CD80 and CD86 on the cell surface. The levels of key DC cytokines, tumor necrosis alpha (TNF-α) and interleukin-10 (IL-10) were measured to better define DC activation. This information served as a cost-effective and rapid proxy for assessing the antigen presentation efficacy of various vaccine formulations, demonstrating a strong correlation with previously published in vivo study outcomes. Hence, our assay enables the selection of the lead vaccine candidates based on DC activation capacity prior to in vivo animal studies.
Collapse
Affiliation(s)
- Lantian Lu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Wei Yang Kong
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Farrhana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - James W. Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jazmina L. Gonzalez Cruz
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
2
|
Wu W, Xia X, Tang L, Luo J, Xiong S, Ma G, Lei H. Phosphoinositide 3-kinase as a therapeutic target in angiogenic disease. Exp Eye Res 2023; 236:109646. [PMID: 37716399 DOI: 10.1016/j.exer.2023.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) generate lipids that control multitudinous intracellular cell signaling events which participate in cell survival and proliferation. In addition, PI3K signaling also contributes to metabolism, immunity, angiogenesis and cardiovascular homeostasis, and many diseases. The diverse actions of PI3K stem from the existence of their various isoforms and a variety of protein effectors. Hence, PI3K isoform-specific inhibitors have already achieved a wonderful effect on treating cancer. Herein, we summarize the molecular mechanism of PI3K inhibitors in preventing the permeability of vessels and neovascularization. Additionally, we briefly illustrate how PI3K signaling modulates blood vessel growth and discuss the different roles that PI3K isoforms play in angiogenesis.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Luosheng Tang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siqi Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoen Ma
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
3
|
Du K, Zhou D, Zhou S, Zhang J, Liu Q, Bai X, Liu Q, Chen Y, Liu W, Kuang C. High-accuracy differential autofocus system with an electrically tunable lens. OPTICS LETTERS 2023; 48:2789-2792. [PMID: 37262211 DOI: 10.1364/ol.488673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
We propose a quasi-confocal microscopy autofocus system incorporating an electrically tunable lens (ETL) to achieve differential detection. The ETL changes its focal length to collect differential curves at speeds <300 Hz, allowing selective locking onto desired focal layers and high-speed differential operations close to the locked focal plane. By segmenting the system's pupil, the interference between the outgoing and incoming near-infrared beams is avoided, thereby greatly improving the signal-to-noise ratio. This ultra-sensitive system, with a focus drift accuracy better than 1/22 focal depth (∼20 nm @100× objective), provides a new, to the best of our knowledge, implementation pathway to meet the requirements of various microscopy techniques.
Collapse
|
4
|
Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int J Mol Sci 2023; 24:8391. [PMID: 37176098 PMCID: PMC10179314 DOI: 10.3390/ijms24098391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Radu Ilinca
- Department of Medical Informatics and Biostatistics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Daniela Gabriela Balan
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
5
|
Fleeman R. Repurposing Inhibitors of Phosphoinositide 3-kinase as Adjuvant Therapeutics for Bacterial Infections. FRONTIERS IN ANTIBIOTICS 2023; 2:1135485. [PMID: 38983593 PMCID: PMC11233138 DOI: 10.3389/frabi.2023.1135485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rise in antimicrobial resistance and the decline in new antibiotics has created a great need for novel approaches to treat drug resistant bacterial infections. Increasing the burden of antimicrobial resistance, bacterial virulence factors allow for survival within the host, where they can evade host killing and antimicrobial therapy within their intracellular niches. Repurposing host directed therapeutics has great potential for adjuvants to allow for more effective bacterial killing by the host and antimicrobials. To this end, phosphoinositide 3-kinase inhibitors are FDA approved for cancer therapy, but also have potential to eliminate intracellular survival of pathogens. This review describes the PI3K pathway and its potential as an adjuvant target to treat bacterial infections more effectively.
Collapse
Affiliation(s)
- Renee Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida. Orlando, FL 32837
| |
Collapse
|
6
|
Wen QX, Luo B, Xie XY, Zhou GF, Chen J, Song L, Liu Y, Xie SQ, Chen L, Li KY, Xiang XJ, Chen GJ. AP2S1 regulates APP degradation through late endosome-lysosome fusion in cells and APP/PS1 mice. Traffic 2023; 24:20-33. [PMID: 36412210 PMCID: PMC10107530 DOI: 10.1111/tra.12874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
AP2S1 is the sigma 2 subunit of adaptor protein 2 (AP2) that is essential for endocytosis. In this study, we investigated the potential role of AP2S1 in intracellular processing of amyloid precursor protein (APP), which contributes to the pathogenesis of Alzheimer disease (AD) by generating the toxic β-amyloid peptide (Aβ). We found that knockdown or overexpression of AP2S1 decreased or increased the protein levels of APP and Aβ in cells stably expressing human full-length APP695, respectively. This effect was unrelated to endocytosis but involved lysosomal degradation. Morphological studies revealed that silencing of AP2S1 promoted the translocalization of APP from RAB9-positive late endosomes (LE) to LAMP1-positive lysosomes, which was paralleled by the enhanced LE-lysosome fusion. In support, silencing of vacuolar protein sorting-associated protein 41 (VPS41) that is implicated in LE-lyso fusion prevented AP2S1-mediated regulation of APP degradation and translocalization. In APP/PS1 mice, an animal model of AD, AAV-mediated delivery of AP2S1 shRNA in the hippocampus significantly reduced the protein levels of APP and Aβ, with the concomitant APP translocalization, LE-lyso fusion and the improved cognitive functions. Taken together, these data uncover a LE-lyso fusion mechanism in APP degradation and suggest a novel role for AP2S1 in the pathophysiology of AD.
Collapse
Affiliation(s)
- Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Qi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Long Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Kun-Yi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Jiao Xiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Frey WD, Anderson AY, Lee H, Nguyen JB, Cowles EL, Lu H, Jackson JG. Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells. PLoS Biol 2022; 20:e3001858. [PMID: 36279312 PMCID: PMC9632905 DOI: 10.1371/journal.pbio.3001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer cells survive chemotherapy and cause lethal relapse by entering a senescent state that facilitates expression of many phagocytosis/macrophage-related genes that engender a novel cannibalism phenotype. We used biosensors and live-cell imaging to reveal the basic steps and mechanisms of engulfment by senescent human and mouse tumor cells. We show filamentous actin in predator cells was localized to the prey cell throughout the process of engulfment. Biosensors to various phosphoinositide (PI) species revealed increased concentration and distinct localization of predator PI(4) P and PI(4,5)P2 at the prey cell during early stages of engulfment, followed by a transient burst of PI(3) P before and following internalization. PIK3C2B, the kinase responsible for generating PI(3)P, was required for complete engulfment. Inhibition or knockdown of Clathrin, known to associate with PIK3C2B and PI(4,5)P2, severely impaired engulfment. In sum, our data reveal the most fundamental cellular processes of senescent cell engulfment, including the precise localizations and dynamics of actin and PI species throughout the entire process.
Collapse
Affiliation(s)
- Wesley D. Frey
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Ashlyn Y. Anderson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hyemin Lee
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Julie B. Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Emma L. Cowles
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hua Lu
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - James G. Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| |
Collapse
|
8
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
9
|
Jin T, Zhang Y, Botchway BOA, Zhang J, Fan R, Zhang Y, Liu X. Curcumin can improve Parkinson's disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem Toxicol 2022; 164:113091. [PMID: 35526734 DOI: 10.1016/j.fct.2022.113091] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a common progressive neurodegenerative disease, and presently has no curative agent. Curcumin, as one of the natural polyphenols, has great potential in neurodegenerative diseases and other different pathological settings. The brain-derived neurotrophic factor (BDNF) and phosphatidylinositol 3 kinase (PI3k)/protein kinase B (Akt) signaling pathways are significantly involved nerve regeneration and anti-apoptotic activities. Currently, relevant studies have confirmed that curcumin has an optimistic impact on neuroprotection via regulating BDNF and PI3k/Akt signaling pathways in neurodegenerative disease. Here, we summarized the relationship between BDNF and PI3k/Akt signaling pathway, the main biological functions and neuroprotective effects of curcumin via activating BDNF and PI3k/Akt signaling pathways in Parkinson's disease. This paper illustrates that curcumin, as a neuroprotective agent, can delay the progression of Parkinson's disease by protecting nerve cells.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Department of Pharmacology, Medical College, Shaoxing University, Zhejiang, China
| | - Ruihua Fan
- School of Life Science, Shaoxing University, Zhejiang, China
| | - Yufeng Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
10
|
Alam SB, Kulka M. Internalization of benzylisoquinoline alkaloids by resting and activated bone marrow-derived mast cells utilizes energy-dependent mechanisms. Inflamm Res 2022; 71:343-356. [PMID: 35076750 PMCID: PMC8897387 DOI: 10.1007/s00011-021-01526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Objective and design Drug delivery to inflammatory cells is dependent upon poorly understood, complex endocytic processes. Berberine (BBR), a benzylisoquinoline alkaloid, binds to heparin and targets glycosaminoglycan-rich granules in mast cells (MC), but the mechanism of BBR internalization is unknown. Methods BMMC were treated with various concentrations of BBR for different amounts of time and BBR internalization was assessed by flow cytometry and fluorescence microscopy. BMMC were pretreated with endocytic inhibitors or a growth factor (IL-3) prior to BBR exposure to access mechanisms of its internalization. Results After 24 h, 48 ± 0.8% of BMMC internalized BBR and this process was dependent upon temperature and the presence of glucose in the medium. Methanol fixation reduced BBR internalization, suggesting the involvement of an energy-dependent active transport mechanism. To determine mode of internalization, BBR was encapsulated into Lipofectamine TM lipoplexes since these are known to circumvent classical endocytic pathways. Incorporating BBR into lipoplexes decreased BBR internalization by 26% and 10% (10 μg/ml and 100 μg/ml Lipo-BBR respectively) by BMMC. BBR endocytosis was significantly reduced by Latrunculin B (88%), Cytochalasin B (87%), Chloroquine (86.5%) and 3-methyladenine (91%), indicating that actin polymerization, lysosomal pH and lysosomal self-degradation via the autophagy pathway was involved. In contrast, IL-3 treatment significantly enhanced BBR endocytosis (54% by 40 ng/ml IL-3) suggesting that IL-3 signaling pathways play a role in internalization. Conclusions Our data suggests that internalization of BBR by resting and IL-3-activated BMMC utilizes an energy-dependent pathway that is dependent upon glucose metabolism and temperature. Furthermore, this process requires actin polymerization and lysosomal trafficking. These data suggest internalization of benzylisoquinoline compounds is an active and complex process. Supplementary Information The online version contains supplementary material available at 10.1007/s00011-021-01526-2.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9, Canada.
- Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
An Overview of Class II Phosphoinositide 3-Kinases. Curr Top Microbiol Immunol 2022; 436:51-68. [DOI: 10.1007/978-3-031-06566-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Dynamin-2 mediates clathrin-dependent endocytosis for amyloid-β internalization in brain microvascular endothelial cells. Microvasc Res 2021; 138:104219. [PMID: 34214572 DOI: 10.1016/j.mvr.2021.104219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022]
Abstract
Dynamin is recognized as a crucial regulator for membrane fission and has three isoforms in mammals. But the expression patterns of dynamin isoforms and their roles in non-neuronal cells are incompletely understood. In this study, the expression profiles of dynamin isoforms and their roles in endocytosis was investigated in brain endothelial cells. We found that Dyn2 was expressed at highest levels, whereas the expression of Dyn1 and Dyn3 were far less than Dyn2. Live-cell imaging was used to investigate the effects of siRNA-mediated knockdown of individual dynamin isoforms on transferrin uptake, and we found that Dyn2, but not Dyn1 or Dyn3, is required for the endocytosis in brain endothelial cells. Results of dextran uptake assay showed that dynamin isoforms are not involved in the clathrin-independent fluid-phase internalization of brain endothelial cells, suggesting the specificity of the role of Dyn2 in clathrin-dependent endocytosis. Immunofluorescence and electron microscopy analysis showed that Dyn2 co-localizes with clathrin and acts at the late stage of vesicle fission in the process of endocytosis. Further results showed that Dyn2 is necessary for the basolateral-to-apical internalization of amyloid-β into brain endothelial cells. We concluded that Dyn2, but not Dyn1 or Dyn3, mediates the clathrin-dependent endocytosis for amyloid-β internalization particularly from basolateral to apical side into brain endothelial cells.
Collapse
|
13
|
Class II phosphatidylinositol 3-kinase isoforms in vesicular trafficking. Biochem Soc Trans 2021; 49:893-901. [PMID: 33666217 PMCID: PMC8106491 DOI: 10.1042/bst20200835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are critical regulators of many cellular processes including cell survival, proliferation, migration, cytoskeletal reorganization, and intracellular vesicular trafficking. They are a family of lipid kinases that phosphorylate membrane phosphoinositide lipids at the 3′ position of their inositol rings, and in mammals they are divided into three classes. The role of the class III PI3K Vps34 is well-established, but recent evidence suggests the physiological significance of class II PI3K isoforms in vesicular trafficking. This review focuses on the recently discovered functions of the distinct PI3K-C2α and PI3K-C2β class II PI3K isoforms in clathrin-mediated endocytosis and consequent endosomal signaling, and discusses recently reported data on class II PI3K isoforms in different physiological contexts in comparison with class I and III isoforms.
Collapse
|
14
|
Class II phosphatidylinositol 3-kinase-C2α is essential for Notch signaling by regulating the endocytosis of γ-secretase in endothelial cells. Sci Rep 2021; 11:5199. [PMID: 33664344 PMCID: PMC7933152 DOI: 10.1038/s41598-021-84548-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) plays a crucial role in angiogenesis at least in part through participating in endocytosis and, thereby, endosomal signaling of several cell surface receptors including VEGF receptor-2 and TGFβ receptor in vascular endothelial cells (ECs). The Notch signaling cascade regulates many cellular processes including cell proliferation, cell fate specification and differentiation. In the present study, we explored a role of PI3K-C2α in Delta-like 4 (Dll4)-induced Notch signaling in ECs. We found that knockdown of PI3K-C2α inhibited Dll4-induced generation of the signaling molecule Notch intracellular domain 1 (NICD1) and the expression of Notch1 target genes including HEY1, HEY2 and NOTCH3 in ECs but not in vascular smooth muscle cells. PI3K-C2α knockdown did not inhibit Dll4-induced endocytosis of cell surface Notch1. In contrast, PI3K-C2α knockdown as well as clathrin heavy chain knockdown impaired endocytosis of Notch1-cleaving protease, γ-secretase complex, with the accumulation of Notch1 at the perinuclear endolysosomes. Pharmacological blockage of γ-secretase also induced the intracellular accumulation of Notch1. Taken together, we conclude that PI3K-C2α is required for the clathrin-mediated endocytosis of γ-secretase complex, which allows for the cleavage of endocytosed Notch1 by γ-secretase complex at the endolysosomes to generate NICD1 in ECs.
Collapse
|
15
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
16
|
Koch PA, Dornan GL, Hessenberger M, Haucke V. The molecular mechanisms mediating class II PI 3-kinase function in cell physiology. FEBS J 2021; 288:7025-7042. [PMID: 33387369 DOI: 10.1111/febs.15692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid-modifying enzymes plays vital roles in cell signaling and membrane trafficking through the production of 3-phosphorylated phosphoinositides. Numerous studies have analyzed the structure and function of class I and class III PI3Ks. In contrast, we know comparably little about the structure and physiological functions of the class II enzymes. Only recent studies have begun to unravel their roles in development, endocytic and endolysosomal membrane dynamics, signal transduction, and cell migration, while the mechanisms that control their localization and enzymatic activity remain largely unknown. Here, we summarize our current knowledge of the class II PI3Ks and outline open questions related to their structure, enzymatic activity, and their physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Philipp Alexander Koch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| | | | - Manuel Hessenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
17
|
Gozzelino L, De Santis MC, Gulluni F, Hirsch E, Martini M. PI(3,4)P2 Signaling in Cancer and Metabolism. Front Oncol 2020; 10:360. [PMID: 32296634 PMCID: PMC7136497 DOI: 10.3389/fonc.2020.00360] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) are central regulators of glycolysis, cancer metabolism, and cancer cell proliferation. At the molecular level, PI3K signaling involves the generation of the second messenger lipids phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. There is increasing evidence that PI(3,4)P2 is not only the waste product for the removal of PI(3,4,5)P3 but can also act as a signaling molecule. The selective cellular functions for PI(3,4)P2 independent of PI(3,4,5)P3 have been recently described, including clathrin-mediated endocytosis and mTOR regulation. However, the specific spatiotemporal dynamics and signaling role of PI3K minor lipid messenger PI(3,4)P2 are not well-understood. This review aims at highlighting the biological functions of this lipid downstream of phosphoinositide kinases and phosphatases and its implication in cancer metabolism.
Collapse
Affiliation(s)
- Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|
18
|
Islam S, Yoshioka K, Aki S, Ishimaru K, Yamada H, Takuwa N, Takuwa Y. Class II phosphatidylinositol 3-kinase α and β isoforms are required for vascular smooth muscle Rho activation, contraction and blood pressure regulation in mice. J Physiol Sci 2020; 70:18. [PMID: 32192434 PMCID: PMC7082390 DOI: 10.1186/s12576-020-00745-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Class II phosphatidylinositol 3-kinases (PI3K), PI3K-C2α and PI3K-C2β, are involved in cellular processes including endocytosis, cilia formation and autophagy. However, the role of PI3K-C2α and PI3K-C2β at the organismal level is not well understood. We found that double knockout (KO) mice with both smooth muscle-specific KO of PI3K-C2α and global PI3K-C2β KO, but not single KO mice of either PI3K-C2α or PI3K-C2β, exhibited reductions in arterial blood pressure and substantial attenuation of contractile responses of isolated aortic rings. In wild-type vascular smooth muscle cells, double knockdown of PI3K-C2α and PI3K-C2β but not single knockdown of either PI3K markedly inhibited contraction with reduced phosphorylation of 20-kDa myosin light chain and MYPT1 and Rho activation, but without inhibition of the intracellular Ca2+ mobilization. These data indicate that PI3K-C2α and PI3K-C2β play the redundant but essential role for vascular smooth muscle contraction and blood pressure regulation mainly through their involvement in Rho activation.
Collapse
Affiliation(s)
- Shahidul Islam
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sho Aki
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroki Yamada
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.,Department of Health Science, Ishikawa Prefectural University, Kahoku, Ishikawa, 929-1210, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
19
|
Aki S, Yoshioka K, Takuwa N, Takuwa Y. TGFβ receptor endocytosis and Smad signaling require synaptojanin1, PI3K-C2α-, and INPP4B-mediated phosphoinositide conversions. Mol Biol Cell 2020; 31:360-372. [PMID: 31913757 PMCID: PMC7183790 DOI: 10.1091/mbc.e19-11-0662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphoinositide conversion regulates a diverse array of dynamic membrane events including endocytosis. However, it is not well understood which enzymes are involved in phosphoinositide conversions for receptor endocytosis. We found by small interfering RNA (siRNA)-mediated knockdown (KD) that class II PI3K α-isoform (PI3K-C2α), the 5'-phosphatase synaptojanin1 (Synj1), and the 4'-phosphatase INPP4B, but not PI3K-C2β, Synj2, or INPP4A, were required for TGFβ-induced endocytosis of TGFβ receptor. TGFβ induced rapid decreases in PI(4,5)P2 at the plasma membrane (PM) with increases in PI(4)P, followed by increases in PI(3,4)P2, in a TGFβ receptor kinase ALK5-dependent manner. TGFβ induced the recruitment of both synaptojanin1 and PI3K-C2α to the PM with their substantial colocalization. Knockdown of synaptojanin1 abolished TGFβ-induced PI(4,5)P2 decreases and PI(4)P increases. Interestingly, PI3K-C2α KD abolished not only TGFβ-induced PI(3,4)P2 increases but also TGFβ-induced synaptojanin1 recruitment to the PM, PI(4,5)P2 decreases, and PI(4)P increases. Finally, the phosphoinositide conversions were necessary for TGFβ-induced activation of Smad2 and Smad3. These observations demonstrate that the sequential phosphoinositide conversions mediated by Synj1, PI3K-C2α, and INPP4B are essential for TGFβ receptor endocytosis and its signaling.
Collapse
Affiliation(s)
- Sho Aki
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| | - Noriko Takuwa
- Department of Health Science, Ishikawa Prefectural University, Kahoku, Ishikawa 929-1210, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
20
|
Margaria JP, Ratto E, Gozzelino L, Li H, Hirsch E. Class II PI3Ks at the Intersection between Signal Transduction and Membrane Trafficking. Biomolecules 2019; 9:E104. [PMID: 30884740 PMCID: PMC6468456 DOI: 10.3390/biom9030104] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of inositol phospholipids by the family of phosphoinositide 3-kinases (PI3Ks) is crucial in controlling membrane lipid composition and regulating a wide range of intracellular processes, which include signal transduction and vesicular trafficking. In spite of the extensive knowledge on class I PI3Ks, recent advances in the study of the three class II PI3Ks (PIK3C2A, PIK3C2B and PIK3C2G) reveal their distinct and non-overlapping cellular roles and localizations. By finely tuning membrane lipid composition in time and space among different cellular compartments, this class of enzymes controls many cellular processes, such as proliferation, survival and migration. This review focuses on the recent developments regarding the coordination of membrane trafficking and intracellular signaling of class II PI3Ks through the confined phosphorylation of inositol phospholipids.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| |
Collapse
|