1
|
Baba K, Kawasaki M, Nishimura H, Suzuki H, Matsuura T, Ikeda N, Fujitani T, Yamanaka Y, Tsukamoto M, Ohnishi H, Yoshimura M, Maruyama T, Sanada K, Sonoda S, Nishimura K, Tanaka K, Onaka T, Ueta Y, Sakai A. Upregulation of the hypothalamo-neurohypophysial system and activation of vasopressin neurones attenuates hyperalgesia in a neuropathic pain model rat. Sci Rep 2022; 12:13046. [PMID: 35906406 PMCID: PMC9338054 DOI: 10.1038/s41598-022-17477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Arginine vasopressin (AVP) is a hypothalamic neurosecretory hormone well known as an antidiuretic, and recently reported to be involved in pain modulation. The expression kinetics of AVP and its potential involvement in the descending pain modulation system (DPMS) in neuropathic pain (NP) remains unclear. We investigated AVP expression and its effects on mechanical and thermal nociceptive thresholds using a unilateral spinal nerve ligation (SNL) model. All rats with SNL developed NP. Intensities of enhanced green fluorescent protein (eGFP) in the supraoptic and paraventricular nuclei, median eminence, and posterior pituitary were significantly increased at 7 and 14 days post-SNL in AVP-eGFP rats. In situ hybridisation histochemistry revealed significantly increased AVP mRNA expression at 14 days post-SNL compared with the sham control group. The chemogenetic activation of AVP neurones significantly attenuated mechanical and thermal hyperalgesia with elevated plasma AVP concentration. These analgesic effects were suppressed by pre-administration with V1a receptor antagonist. AVP neurones increased the neuronal activity of serotonergic dorsal raphe, noradrenergic locus coeruleus, and inhibitory interneurones in the spinal dorsal horn. These results suggest that the hypothalamo-neurohypophysial system of AVP is upregulated in NP and activated endogenous AVP exerts analgesic effects via the V1a receptors. AVP neurones may activate the DPMS.
Collapse
Affiliation(s)
- Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Naofumi Ikeda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
2
|
Sanada K, Ueno H, Miyamoto T, Baba K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Onaka T, Otsuji Y, Kataoka M, Ueta Y. AVP-eGFP was significantly upregulated by hypovolemia in the parvocellular division of the paraventricular nucleus in the transgenic rats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R161-R169. [PMID: 35018823 DOI: 10.1152/ajpregu.00107.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.
Collapse
Affiliation(s)
- Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsu Miyamoto
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yutaka Otsuji
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaharu Kataoka
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Tamegart L, Abbaoui A, Oukhrib M, Bouyatas MM, Gamrani H. Physiological Alterations of Subchronic Lead Exposure Induced Degeneration of Epithelial Cells in Proximal Tubules and the Remedial Effect of Curcumin-III in Meriones shawi: a Possible Link with Vasopressin Release. Biol Trace Elem Res 2022; 200:1303-1311. [PMID: 34176078 DOI: 10.1007/s12011-021-02751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
At the industrial working conditions, lead exposure could induce several alterations for the human body. Subchronic lead exposure is linked with several injuries including cerebral and renal dysfunctions. The present work discusses the effects of subchronic lead toxicity (3 g/l) in drinking water during the period of treatment (6 weeks) on vasopressin system and epithelial cells in proximal tubules. Also, we aimed to evaluate the protective effect of curcumin-III administered orally by gavage (30 mg/kg BW), against subchronic Pb exposure in Meriones shawi. The biochemical and histopathological examinations demonstrate renal damages induced by lead toxicity. In addition, the behavioral and immunohistochemical studies revealed that Pb neurotoxicity exhibited an anxious behavior with a significant elevation of the vasopressin (AVP) staining within the paraventricular nuclei. The study showed also curcumin-III restored the renal alterations with an anxiolytic effect. Moreover, it restored the AVP level in the studying nuclei. Our work supports a possible link between AVP release and epithelial degeneration in the proximal tubules, and shows a new pharmacological effect of curcumin-III as an anxiolytic agent against lead toxicity.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mjid Oukhrib
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mouly Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Department of Biology, Multidisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
- Neurosciences, Pharmacology and Environment Unit, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Avenue My Abdellah, B.P. 2390, Marrakesh, Morocco.
| |
Collapse
|
4
|
Ueno H, Sanada K, Miyamoto T, Baba K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Oginosawa Y, Araki M, Sonoda S, Onaka T, Otsuji Y, Ueta Y. Oxytocin-monomeric red fluorescent protein 1 synthesis in the hypothalamus under osmotic challenge and acute hypovolemia in a transgenic rat line. Physiol Rep 2020; 8:e14558. [PMID: 32914562 PMCID: PMC7507703 DOI: 10.14814/phy2.14558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
We generated a transgenic rat line that expresses oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualize the dynamics of OXT. In this transgenic rat line, hypothalamic OXT can be assessed under diverse physiological and pathophysiological conditions by semiquantitative fluorometry of mRFP1 fluorescence intensity as a surrogate marker for endogenous OXT. Using this transgenic rat line, we identified the changes in hypothalamic OXT synthesis under various physiological conditions. However, few reports have directly examined hypothalamic OXT synthesis under hyperosmolality or hypovolemia. In this study, hypothalamic OXT synthesis was investigated using the transgenic rat line after acute osmotic challenge and acute hypovolemia induced by intraperitoneal (i.p.) administration of 3% hypertonic saline (HTN) and polyethylene glycol (PEG), respectively. The mRFP1 fluorescence intensity in the paraventricular (PVN) and supraoptic nuclei (SON) was significantly increased after i.p. administration of HTN and PEG, along with robust Fos-like immunoreactivity (co-expression). Fos expression showed neuronal activation in the brain regions that are associated with the hypothalamus and/or are involved in maintaining water and electrolyte homeostasis in HTN- and PEG-treated rats. OXT and mRFP1 gene expressions were dramatically increased after HTN and PEG administration. The plasma OXT level was extremely increased after HTN and PEG administration. Acute osmotic challenge and acute hypovolemia induced upregulation of hypothalamic OXT in the PVN and SON. These results suggest that not only endogenous arginine vasopressin (AVP) but also endogenous OXT has a key role in maintaining body fluid homeostasis to cope with hyperosmolality and hypovolemia.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kenya Sanada
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Tetsu Miyamoto
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuhiko Baba
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kentaro Tanaka
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Haruki Nishimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuaki Nishimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Satomi Sonoda
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Mitsuhiro Yoshimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Takashi Maruyama
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Yasushi Oginosawa
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Masaru Araki
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Shinjo Sonoda
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Yutaka Otsuji
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Yoichi Ueta
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| |
Collapse
|
5
|
Akiyama Y, Yoshimura M, Ueno H, Sanada K, Tanaka K, Sonoda S, Nishimura H, Nishimura K, Motojima Y, Saito R, Maruyama T, Hirata K, Uezono Y, Ueta Y. Peripherally administered cisplatin activates a parvocellular neuronal subtype expressing arginine vasopressin and enhanced green fluorescent protein in the paraventricular nucleus of a transgenic rat. J Physiol Sci 2020; 70:35. [PMID: 32650712 PMCID: PMC10717609 DOI: 10.1186/s12576-020-00764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin is one of the most potent anti-cancer drugs, though several side effects can induce stress responses such as activation of the hypothalamic-pituitary adrenal (HPA) axis. Arginine vasopressin (AVP) and corticotrophin-releasing hormone (CRH) expressed in the parvocellular division of the paraventricular nucleus (pPVN) play an important role in the stress-induced activation of the HPA axis. We aimed to evaluate whether intraperitoneal (i.p.) administration of cisplatin could activate parvocellular neurons in the pPVN, using a transgenic rat model that expresses the fusion gene of AVP and enhanced green fluorescent protein (eGFP). Along with the induction of FosB, a marker of neuronal activation, i.p. administration of cisplatin significantly increased eGFP fluorescent intensities in the pPVN. In situ hybridization histochemistry revealed that AVP-eGFP and CRH mRNAs in the pPVN were increased significantly in cisplatin-treated rats. These results suggest that cisplatin administration increases neuronal activation and upregulates AVP and CRH expression in the pPVN.
Collapse
Affiliation(s)
- Yasuki Akiyama
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Keiji Hirata
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
6
|
Tanaka K, Saito R, Sanada K, Nishimura H, Nishimura K, Sonoda S, Ueno H, Motojima Y, Matsuura T, Yoshimura M, Maruyama T, Onaka T, Yamamoto Y, Kusuhara K, Ueta Y. Expression of hypothalamic feeding-related peptide genes and neuroendocrine responses in an experimental allergic encephalomyelitis rat model. Peptides 2020; 129:170313. [PMID: 32298774 DOI: 10.1016/j.peptides.2020.170313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Experimental allergic encephalomyelitis (EAE) is considered to be a useful animal model of human multiple sclerosis (MS). However, among the various symptoms of MS, the mechanisms contributing to inflammatory anorexia remain unclear. In the present study, we used an EAE rat model to examine changes in expression levels of hypothalamic feeding-related peptide genes and neuroendocrine responses such as the hypothalamo-neurohypophysial system and the hypothalamo-pituitary-adrenal (HPA) axis. The weight gain and cumulative food intake in EAE rats in the early days after immunization was significantly lower than that of the control group. The expression of orexigenic peptide genes Npy and Agrp were significantly increased, whereas the levels of anorectic peptide genes (Pomc and Cart) were significantly decreased in the hypothalamus of EAE rats. There was also a significant increase in the mRNA and plasma oxytocin (OXT) but not of arginine vasopressin (AVP) in the supraoptic and paraventricular nuclei (PVN) of EAE rats at days 12 and 18 after immunization. The expression of corticotropin-releasing hormone (Crh) and Avp was downregulated and upregulated, respectively, in the parvocellular division of the PVN at day 12 after immunization. The expression level of Pomc in the anterior pituitary significantly increased, accompanied by increased plasma corticosterone levels, at days 6, 12, and 18 after immunization. These results suggest that inflammatory anorexia in rat EAE may be caused by activation of the OXT-ergic pathway and HPA axis via changes in the expression of hypothalamic feeding-related peptides, including Avp but not Crh.
Collapse
Affiliation(s)
- Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, Shimono, 329-0498, Japan
| | - Yukiyo Yamamoto
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
7
|
Ueno H, Miyamoto T, Sanada K, Nakazono K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Serino R, Otsuji Y, Ueta Y. Changes in gene expressions of hypothalamic neuropeptides controlling feeding behaviors in bilateral nephrectomized rats. Neurosci Lett 2019; 711:134426. [PMID: 31401303 DOI: 10.1016/j.neulet.2019.134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Anorexia is one of the most widespread eating disorders that appears to contribute to malnutrition in patients with advanced kidney dysfunction. The changes of neuropeptides controlling feeding behaviors synthesized in the hypothalamus under several physiological condition could induce anorexia. While several mechanisms underlying uremic anorexia have been proposed, the changes of hypothalamic neuropeptides controlling feeding behaviors of uremic patients are poorly understood. The gene expressions of hypothalamic neuropeptides controlling feeding behaviors were evaluated after bilateral nephrectomy, which is a model of acute kidney dysfunction, by in situ hybridization histochemistry. Food consumption decreased markedly in bilateral nephrectomized rats. The mRNA levels of corticotrophin-releasing hormone, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, which suppress feeding behavior, were significantly higher in bilateral nephrectomized rats than in sham-operated rats. On the other hand, the mRNA levels of Agouti-related peptide, neuropeptide Y, melanin-concentrating hormone, and orexin, which promote feeding behavior, were significantly lower in bilateral nephrectomized rats than in sham-operated rats. In addition, the plasma level of leptin, which has an anorexic effect, increased after bilateral nephrectomy. The results suggest that hypothalamic neuropeptides controlling feeding behaviors may be involved in the development of anorexia in bilateral nephrectomized rats. This report is the first step to elucidating the physiological mechanisms of anorexia in patients with kidney dysfunction.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kenya Sanada
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazutoshi Nakazono
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu 808-0034, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|