1
|
Wu Y, Zou J, Tang K, Xia Y, Wang X, Song L, Wang J, Wang K, Wang Z. From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration. BURNS & TRAUMA 2024; 12:tkae013. [PMID: 38957661 PMCID: PMC11218788 DOI: 10.1093/burnst/tkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/04/2024]
Abstract
The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Junwu Zou
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Jinhai Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
2
|
He Z, Rault F, Lewandowski M, Mohsenzadeh E, Salaün F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers (Basel) 2021; 13:E174. [PMID: 33418962 PMCID: PMC7825031 DOI: 10.3390/polym13020174] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Polyvinylidene fluoride (PVDF) is among the most attractive piezo-polymers due to its excellent piezoelectricity, lightweight, flexibility, high thermal stability, and chemical resistance. PVDF can exist under different forms of films, membranes, and (nano)fibers, and its piezoelectric property related to its β phase content makes it interesting for energy harvesters and wearable applications. Research investigation shows that PVDF in the form of nanofibers prepared by electrospinning has more flexibility and better air permeability, which make them more suitable for these types of applications. Electrospinning is an efficient technique that produces PVDF nanofibers with a high β phase fraction and crystallinity by aligning molecular dipoles (-CH2 and -CF2) along an applied voltage direction. Different nanofibers production techniques and more precisely the electrospinning method for producing PVDF nanofibers with optimal electrospinning parameters are the key focuses of this paper. This review article highlights recent studies to summarize the influence of electrospinning parameters such as process (voltage, distance, flow rate, and collector), solution (Mw, concentration, and solvent), and ambient (humidity and temperature) parameters to enhance the piezoelectric properties of PVDF nanofibers. In addition, recent development regarding the effect of adding nanoparticles in the structure of nanofibers on the improvement of the β phase is reviewed. Finally, different methods of measuring piezoelectric properties of PVDF nanofibrous membrane are discussed.
Collapse
Affiliation(s)
- Zhongchen He
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| | - François Rault
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| | - Maryline Lewandowski
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| | - Elham Mohsenzadeh
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
- Junia, F-59000 Lille, France
- Univ. Lille, F-59000 Lille, France
| | - Fabien Salaün
- ENSAIT, GEMTEX—Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France; (Z.H.); (F.R.); (M.L.); (E.M.)
| |
Collapse
|
3
|
Kalimuldina G, Turdakyn N, Abay I, Medeubayev A, Nurpeissova A, Adair D, Bakenov Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5214. [PMID: 32932744 PMCID: PMC7570857 DOI: 10.3390/s20185214] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
With the increase of interest in the application of piezoelectric polyvinylidene fluoride (PVDF) in nanogenerators (NGs), sensors, and microdevices, the most efficient and suitable methods of their synthesis are being pursued. Electrospinning is an effective method to prepare higher content β-phase PVDF nanofiber films without additional high voltage poling or mechanical stretching, and thus, it is considered an economically viable and relatively simple method. This work discusses the parameters affecting the preparation of the desired phase of the PVDF film with a higher electrical output. The design and selection of optimum preparation conditions such as solution concentration, solvents, the molecular weight of PVDF, and others lead to electrical properties and performance enhancement in the NG, sensor, and other applications. Additionally, the effect of the nanoparticle additives that showed efficient improvements in the PVDF films was discussed as well. For instance, additives of BaTiO3, carbon nanotubes, graphene, nanoclays, and others are summarized to show their contributions to the higher piezo response in the electrospun PVDF. The recently reported applications of electrospun PVDF films are also analyzed in this review paper.
Collapse
Affiliation(s)
- Gulnur Kalimuldina
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Nursultan Turdakyn
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Ingkar Abay
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Alisher Medeubayev
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Arailym Nurpeissova
- National Laboratory Astana, Institute of Batteries, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Desmond Adair
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
| | - Zhumabay Bakenov
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (N.T.); (I.A.); (A.M.); (D.A.); (Z.B.)
- National Laboratory Astana, Institute of Batteries, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|
4
|
Kalani S, Kohandani R, Bagherzadeh R. Flexible electrospun PVDF–BaTiO3 hybrid structure pressure sensor with enhanced efficiency. RSC Adv 2020; 10:35090-35098. [PMID: 35515651 PMCID: PMC9056859 DOI: 10.1039/d0ra05675h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Ceramic doped-polymer structures as organic and inorganic hybrid structures constitute a new area of advanced materials for flexible and stretchable sensors and actuators. Here, uniform ceramic-polymer composites of tetragonal BaTiO3 and polyvinylidene fluoride (PVDF) were prepared using solution casting to improve the pressure sensitivity. By introducing Ba–TiO3 nanoparticles to PVDF nanofibers, piezoelectricity and pressure sensitivity of hybrid nanofiber mats were significantly improved. In addition, we proposed a novel flexible and stretchable multilayered pressure sensor composed of electrospun nanocomposite fibers with high electrical sensitivity up to 6 mV N−1 compared to 1.88 mV N−1 for the pure PVDF sensors upon the application of cyclic loads at 2.5 Hz frequency and a constant load of 0.5 N. Indeed, this work provides a composition-dependent approach for the fabrication of nanostructures for pressure sensors in a wide variety of wearable devices and technologies. A hybrid structure composed of organic and inorganic piezoelectric fibrous material was developed as a flexible and stretchable pressure sensor. A separately sprayed configuration has the best performance for low frequency and low-pressure conditions.![]()
Collapse
Affiliation(s)
- Sahar Kalani
- Advanced Fibrous Materials LAB
- Institute for Advanced Textile Materials and Technologies (ATMT)
- School of Advanced Materials and Processes
- Amirkabir University of Technology
- Tehran
| | - Reza Kohandani
- Department of Electrical and Computer Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Roohollah Bagherzadeh
- Advanced Fibrous Materials LAB
- Institute for Advanced Textile Materials and Technologies (ATMT)
- School of Advanced Materials and Processes
- Amirkabir University of Technology
- Tehran
| |
Collapse
|
5
|
Bhattacharjee Y, Chatterjee D, Bose S. Core-Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30762-30773. [PMID: 30106274 DOI: 10.1021/acsami.8b10819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we report high electromagnetic interference (EMI) shielding effectiveness of -40 dB in the Ku-band (for a 600 μm thick film) through a unique core-shell heterostructure consisting of a ferritic core (Fe3O4) and a conducting shell (multiwalled carbon nanotubes, MWCNTs) supported onto a dielectric spacer (here SiO2). In recent times, materials with good flexibility, heat dissipation ability, and sustainability together with efficient EMI shielding at minimal thickness are highly desirable, especially if they can be easily processed into thin films. The resulting composites here shielded EM radiation mostly through absorption driven by multiple interfaces provided by the heterostructure. The shielding value obtained here is fairly superior among the different polymer nanocomposite-based EMI shielding materials. In addition to EMI shielding capability, this composite material exhibits outstanding heat dissipation ability (72 °C to room temperature in less than 90 s) as well as high heat sustainability. The composite material retained its EMI shielding property even after repeated heat cycles, thereby opening new avenues in the design of lightweight, flexible, and sustainable EMI shielding materials.
Collapse
|
6
|
Shao H, Fang J, Wang H, Lin T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv 2015. [DOI: 10.1039/c4ra16360e] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrospun PVDF nanofibers with uniform fiber-morphology, smaller diameter and higher β crystal phase content show higher mechanical-to-electric energy conversion ability.
Collapse
Affiliation(s)
- Hao Shao
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Jian Fang
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Hongxia Wang
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Tong Lin
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| |
Collapse
|