1
|
Wang Z, Lu Y, Zhang G, Quan L, Liu M, Liu H, Wang Y. A Defective Disc-Like Cu 1.96S Anode Material with the Efficient Cu Vacancies for High-Performance Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310518. [PMID: 38429235 DOI: 10.1002/smll.202310518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/10/2024] [Indexed: 03/03/2024]
Abstract
Due to their significant capacity and reliable reversibility, transition metal sulphides (TMSs) have received attention as potential anode materials for sodium-ion batteries (SIBs). Nonetheless, a prevalent challenge with TMSs lies in their significant volume expansion and sluggish kinetics, impeding their capacity for rapid and enduring Na+ storage. Herein, a Cu1.96S@NC nanodisc material enriched with copper vacancies is synthesised via a hydrothermal and annealing procedure. Density functional theory (DFT) calculations reveal that the incorporation of copper vacancies significantly boosts electrical conductivity by reducing the energy barrier for ion diffusion, thereby promoting efficient electron/ion transport. Moreover, the presence of copper vacancies creates ample active sites for the integration of sodium ions, streamlines charge transfer, boosts electronic conductivity, and, ultimately, significantly enhances the overall performance of SIBs. This novel anode material, Cu1.96S@NC, demonstrates a reversible capacity of 339 mAh g-1 after 2000 cycles at a rate of 5 A g-1. In addition, it maintains a noteworthy reversible capacity of 314 mAh g-1 with an exceptional capacity retention of 96% even after 2000 cycles at 20 A g-1. The results demonstrate that creating cationic vacancies is a highly effective strategy for engineering anode materials with high capacity and rapid reactivity.
Collapse
Affiliation(s)
- Zhihao Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yongyi Lu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Guangdi Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lingfeng Quan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Mingzu Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Zuo X, Han X, Wang Z, Liu Y, Li J, Zhang M, Huang C, Cai K. Greatly Enhanced Thermoelectric Performance of Flexible Cu 2-xS Composite Film on Nylon by Se Doping. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:950. [PMID: 38869575 PMCID: PMC11173826 DOI: 10.3390/nano14110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
In this work, flexible Cu2-xS films on nylon membranes are prepared by combining a simple hydrothermal synthesis and vacuum filtration followed by hot pressing. The films consist of Cu2S and Cu1.96S two phases with grain sizes from nano to submicron. Doping Se on the S site not only increases the Cu1.96S content in the Cu2-xS to increase carrier concentration but also modifies electronic structure, thereby greatly improves the electrical properties of the Cu2-xS. Specifically, an optimal composite film with a nominal composition of Cu2-xS0.98Se0.02 exhibits a high power factor of ~150.1 μW m-1 K-2 at 300 K, which increases by ~138% compared to that of the pristine Cu2-xS film. Meanwhile, the composite film shows outstanding flexibility (~97.2% of the original electrical conductivity is maintained after 1500 bending cycles with a bending radius of 4 mm). A four-leg flexible thermoelectric (TE) generator assembled with the optimal film generates a maximum power of 329.6 nW (corresponding power density of 1.70 W m-2) at a temperature difference of 31.1 K. This work provides a simple route to the preparation of high TE performance Cu2-xS-based films.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kefeng Cai
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
3
|
Lin X, Chen H, Deng T, Cai B, Xia Y, Xie L, Wang H, Huang C. Improved Immune Response for Colorectal Cancer Therapy Triggered by Multifunctional Nanocomposites with Self-Amplifying Antitumor Ferroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13481-13495. [PMID: 38456402 DOI: 10.1021/acsami.3c16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ferroptosis, as a type of regulated cell death, can trigger the release of damage-associated molecular patterns from cancer cells and lead to the enhancement of immune recognition. Fenton reaction-mediated chemodynamic therapy could initiate ferroptosis by generating lipid peroxides, but its efficiency would be greatly restricted by the insufficient H2O2 and antioxidant system within the tumor. Herein, this work reports the successful preparation of H2O2 self-supplied and glutathione (GSH)-depletion therapeutic nanocomposites (Cu2O@Au) through in situ growth of Au nanoparticles on the surface of cuprous oxide (Cu2O) nanospheres. Upon delivery into cancer cells, the released Cu2O could consume endogenous H2S within colorectal cancer cells to form Cu31S16 nanoparticles, while the released Au NPs could catalyze glucose to generate H2O2 and gluconic acid. The self-supplying endogenous H2O2 and lower acidity could amplify the Cu ion-induced Fenton-like reaction. Meanwhile, the consumption of glucose would reduce GSH generation by disrupting the pentose phosphate pathway. Additionally, the Cu2+/Cu+ catalytic cycle promotes the depletion of GSH, leading to lipid peroxide accumulation and ferroptosis. It was found that the onset of ferroptosis triggered by Cu2O@Au could initiate immunologic cell death, promote dendritic cell maturation and T-cell infiltration, and finally enhance the antitumor efficacy of the PD-L1 antibody. In summary, this collaborative action produces a remarkable antitumor effect, which provides a promising treatment strategy for colorectal cancer.
Collapse
Affiliation(s)
- Xiaosheng Lin
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hongwu Chen
- Shantou University Medical College, Shantou 515041, China
| | - Tingting Deng
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Binghui Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yubin Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lei Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Huaiming Wang
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Cong Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Li J, Wang C, Chen X, Ma Y, Dai C, Yang H, Li Q, Tao J, Wu T. Ball milling synthesis of Fe 3O 4 nanoparticles-functionalized porous boron nitride with enhanced cationic dye removal performance. RSC Adv 2024; 14:7124-7130. [PMID: 38414987 PMCID: PMC10898448 DOI: 10.1039/d3ra07557e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Enhancement of the adsorption performance and recyclability of adsorbents is a crucial aspect of water treatment. Herein, we used one-dimensional porous boron nitride (PBN) as a carrier to load Fe3O4 nanoparticles for the preparation of Fe3O4 nanoparticles-functionalized porous boron nitride (Fe3O4/PBN) via a ball milling method. The high-energy ball milling promoted the creation of a negatively charged PBN surface and facilitated the uniform distribution of Fe3O4 nanoparticles on the surface of PBN. The adsorption performance of Fe3O4/PBN toward cationic dyes could be significantly improved while no enhancement was observed for anionic dyes. The great adsorption performance of Fe3O4/PBN is due to its surface functional groups and surface defects formed in the ball milling process. Moreover, the strong interaction force between Fe3O4/PBN and cationic dyes promotes rapid initial adsorption due to their negatively charged surface. Magnetic measurements demonstrated that Fe3O4/PBN is superparamagnetic. The composites with low loadings of Fe3O4 nanoparticles could be quickly separated from the aqueous solution under a low applied magnetic field, improving their recyclability. This work highlights the role of ball milling in improving the adsorption performance of Fe3O4/PBN and greatly promotes the practical application of Fe3O4/PBN in the field of environmental purification.
Collapse
Affiliation(s)
- Jie Li
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Chuanhui Wang
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Xinqi Chen
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Yunxiu Ma
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Chu Dai
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Hui Yang
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Qian Li
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Junhui Tao
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| | - Tian Wu
- School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education Wuhan 430205 P.R. China +86-27-52363361 +86-27-52363361
- Institute of Materials Research and Engineering, Hubei Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education Wuhan 430205 P.R. China
| |
Collapse
|
5
|
Zuo X, Han X, Lu Y, Liu Y, Wang Z, Li J, Cai K. Largely Enhanced Thermoelectric Power Factor of Flexible Cu 2-xS Film by Doping Mn. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7159. [PMID: 38005087 PMCID: PMC10672275 DOI: 10.3390/ma16227159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Copper-sulfide-based materials have attracted noteworthy attention as thermoelectric materials due to rich elemental reserves, non-toxicity, low thermal conductivity, and adjustable electrical properties. However, research on the flexible thermoelectrics of copper sulfide has not yet been reported. In this work, we developed a facile method to prepare flexible Mn-doped Cu2-xS films on nylon membranes. First, nano to submicron powders with nominal compositions of Cu2-xMnyS (y = 0, 0.01, 0.03, 0.05, 0.07) were synthesized by a hydrothermal method. Then, the powders were vacuum-filtrated on nylon membranes and finally hot-pressed. Phase composition and microstructure analysis revealed that the films contained both Cu2S and Cu1.96S, and the size of the grains was ~20-300 nm. By Mn doping, there was an increase in carrier concentration and mobility, and ultimately, the electrical properties of Cu2-xS were improved. Eventually, the Cu2-xMn0.05S film showed a maximum power factor of 113.3 μW m-1 K-2 and good flexibility at room temperature. Moreover, an assembled four-leg flexible thermoelectric generator produced a maximum power of 249.48 nW (corresponding power density ~1.23 W m-2) at a temperature difference of 30.1 K, and had good potential for powering low-power-consumption wearable electronics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kefeng Cai
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China; (X.Z.); (X.H.); (Y.L.); (Y.L.); (Z.W.); (J.L.)
| |
Collapse
|
6
|
Sam S, Odagawa S, Nakatsugawa H, Okamoto Y. Effect of Ni Substitution on Thermoelectric Properties of Bulk β-Fe 1-xNi xSi 2 (0 ≤ x ≤ 0.03). MATERIALS (BASEL, SWITZERLAND) 2023; 16:927. [PMID: 36769934 PMCID: PMC9918067 DOI: 10.3390/ma16030927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A thermoelectric generator, as a solid-state device, is considered a potential candidate for recovering waste heat directly as electrical energy without any moving parts. However, thermoelectric materials limit the application of thermoelectric devices due to their high costs. Therefore, in this work, we attempt to improve the thermoelectric properties of a low-cost material, iron silicide, by optimizing the Ni doping level. The influence of Ni substitution on the structure and electrical and thermoelectric characteristics of bulk β-FexNi1-xSi2 (0 ≤ x ≤ 0.03) prepared by the conventional arc-melting method is investigated. The thermoelectric properties are reported over the temperature range of 80-800 K. At high temperatures, the Seebeck coefficients of Ni-substituted materials are higher and more uniform than that of the pristine material as a result of the reduced bipolar effect. The electrical resistivity decreases with increasing x owing to the increases in metallic ε-phase and carrier density. The ε-phase increases with Ni substitution, and solid solution limits of Ni in β-FeSi2 can be lower than 1%. The highest power factor of 200 μWm-1K-2 at 600 K is obtained for x = 0.001, resulting in the enhanced ZT value of 0.019 at 600 K.
Collapse
Affiliation(s)
- Sopheap Sam
- Yokohama National University, Yokohama 240-8501, Japan
| | - Soma Odagawa
- Yokohama National University, Yokohama 240-8501, Japan
| | | | | |
Collapse
|
7
|
Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thermo-electrochemical cells (also known as thermocells, TECs) represent a promising technology for harvesting and exploiting low-grade waste heat (<100–150 °C) ubiquitous in the modern environment. Based on temperature-dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy, generating power at low costs, with minimal material consumption and negligible carbon footprint. Recent developments in thermocell performances are reviewed in this article with specific focus on new redox couples, electrolyte optimisation towards enhancing power output and operating temperature regime and the use of carbon and other nanomaterials for producing electrodes with high surface area for increasing current density and device performance. The highest values of output power and cell potentials have been achieved for the redox ferri/ferrocyanide system and Co2+/3+, with great opportunities for further development in both aqueous and non-aqueous solvents. New thermoelectric applications in the field include wearable and portable electronic devices in the health and performance-monitoring sectors; using body heat as a continuous energy source, thermoelectrics are being employed for long-term, continuous powering of these devices. Energy storage in the form of micro supercapacitors and in lithium ion batteries is another emerging application. Current thermocells still face challenges of low power density, conversion efficiency and stability issues. For waste-heat conversion (WHC) to partially replace fossil fuels as an alternative energy source, power generation needs to be commercially viable and cost-effective. Achieving greater power density and operations at higher temperatures will require extensive research and significant developments in the field.
Collapse
|
8
|
Li S, Duan H, Yu J, Qiu C, Yu R, Chen Y, Fang Y, Cai X, Yang S. Cu Vacancy Induced Product Switching from Formate to CO for CO 2 Reduction on Copper Sulfide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simeng Li
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huan Duan
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Jun Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Chen Qiu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Rongxing Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Yanpeng Chen
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| |
Collapse
|
9
|
Wang CF, Wang YH, Yang XG, Liu KG. Synthesis, characterization and photothermal conversion performance of three xanthene-functionalized dicopper complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|