1
|
Pezeshki B, Abdulabbas HT, Alturki AD, Mansouri P, Zarenezhad E, Nasiri-Ghiri M, Ghasemian A. Synergistic Interactions Between Probiotics and Anticancer Drugs: Mechanisms, Benefits, and Challenges. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10462-0. [PMID: 39873952 DOI: 10.1007/s12602-025-10462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy. Probiotics employ various mechanisms to inhibit cancer initiation and progression. These include colonizing and protecting the gastrointestinal tract (GIT), producing metabolites, inducing apoptosis and autophagy, exerting anti-inflammatory properties, preventing metastasis, enhancing the effectiveness of immune checkpoint inhibitors (ICIs), promoting cancer-specific T cell infiltration, arresting the cell cycle, and exhibiting direct or indirect synergistic effects with anticancer drugs. Additionally, probiotics have been shown to activate tumor suppressor genes and inhibit pro-inflammatory transcription factors. They also increase reactive oxygen species production within cancer cells. Synergistic interactions between probiotics and various anticancer drugs, such as cisplatin, cyclophosphamide, 5-fluorouracil, trastuzumab, nivolumab, ipilimumab, apatinib, gemcitabine, tamoxifen, sorafenib, celecoxib and irinotecan have been observed. The combination of probiotics with anticancer drugs holds promise in overcoming drug resistance, reducing recurrence, minimizing side effects, and lowering treatment costs. In addition, fecal microbiota transplantation (FMT) and prebiotics supplementation has increased cytotoxic T cells within tumors. However, probiotics may leave some adverse effects such as risk of infection and gastrointestinal effects, antagonistic effects with drugs, and different responses among patients. These findings highlight insights for considering specific strains and engineered probiotic applications, preferred doses and timing of treatment, and personalized therapies to enhance the efficacy of cancer therapy. Accordingly, targeted interventions and guidelines establishment needs extensive randomized controlled trials as probiotic-based cancer therapy has not been approved by Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Babak Pezeshki
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthanna, Iraq
| | - Ahmed D Alturki
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Samawah, Al-Muthanna, Iraq
| | - Pegah Mansouri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri-Ghiri
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Sulaimany S, Farahmandi K, Mafakheri A. Computational prediction of new therapeutic effects of probiotics. Sci Rep 2024; 14:11932. [PMID: 38789535 PMCID: PMC11126595 DOI: 10.1038/s41598-024-62796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Probiotics are living microorganisms that provide health benefits to their hosts, potentially aiding in the treatment or prevention of various diseases, including diarrhea, irritable bowel syndrome, ulcerative colitis, and Crohn's disease. Motivated by successful applications of link prediction in medical and biological networks, we applied link prediction to the probiotic-disease network to identify unreported relations. Using data from the Probio database and International Classification of Diseases-10th Revision (ICD-10) resources, we constructed a bipartite graph focused on the relationship between probiotics and diseases. We applied customized link prediction algorithms for this bipartite network, including common neighbors, Jaccard coefficient, and Adamic/Adar ranking formulas. We evaluated the results using Area under the Curve (AUC) and precision metrics. Our analysis revealed that common neighbors outperformed the other methods, with an AUC of 0.96 and precision of 0.6, indicating that basic formulas can predict at least six out of ten probable relations correctly. To support our findings, we conducted an exact search of the top 20 predictions and found six confirming papers on Google Scholar and Science Direct. Evidence suggests that Lactobacillus jensenii may provide prophylactic and therapeutic benefits for gastrointestinal diseases and that Lactobacillus acidophilus may have potential activity against urologic and female genital illnesses. Further investigation of other predictions through additional preclinical and clinical studies is recommended. Future research may focus on deploying more powerful link prediction algorithms to achieve better and more accurate results.
Collapse
Affiliation(s)
- Sadegh Sulaimany
- Social and Biological Network Analysis Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran.
| | - Kajal Farahmandi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Aso Mafakheri
- Social and Biological Network Analysis Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
3
|
You Y, Chen Y, Wei M, Tang M, Lu Y, Zhang Q, Cao Q. Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study. Nutrients 2024; 16:777. [PMID: 38542688 PMCID: PMC10974920 DOI: 10.3390/nu16060777] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 12/31/2024] Open
Abstract
The main topic of this research is the relationship between dietary intake of live microbe-containing (LMC) foods, recreational physical activity (RPA), and the systemic immune-inflammation index (SII). This study presented a cohort of 26,254 individuals in the National Health and Nutrition Examination Survey (NHANES), representing an estimated weighted population of 193,637,615 in the United States. Weighted multivariable linear regression models were used in consideration of the multi-stage sampling design. Results: The study found that medium-LMC foods were negatively associated with the SII [β (95% CI): -4.807 (-7.752, -1.862), p = 0.002], indicating that their intake was correlated with lower levels of the SII. However, no significant associations were found with low- or high-LMC foods. The study also explored the relationship between RPA and the SII, finding that more time spent in RPA was negatively associated with the SII [β (95% CI): -0.022 (-0.034, -0.011), p < 0.001]. A mediation analysis was conducted to investigate the role of RPA in the relationship between medium-LMC food intake and the SII. The analysis revealed that RPA had a notable indirect effect, contributing to 6.7% of the overall change in the SII. Overall, this study suggests that medium-LMC food intake and RPA may have beneficial effects on systemic immune inflammation.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; (Y.Y.); (M.W.)
- School of Social Sciences, Tsinghua University, Beijing 100084, China;
| | - Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC 3004, Australia;
| | - Mengxian Wei
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; (Y.Y.); (M.W.)
- School of Social Sciences, Tsinghua University, Beijing 100084, China;
| | - Meihua Tang
- Shanghai Fire Research Institute of Mem, Shanghai 200030, China;
| | - Yuqing Lu
- School of Social Sciences, Tsinghua University, Beijing 100084, China;
- Department of Psychology, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian 250111, China;
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming 650093, China
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
4
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
5
|
Zemanova N, Omelka R, Mondockova V, Kovacova V, Martiniakova M. Roles of Gut Microbiome in Bone Homeostasis and Its Relationship with Bone-Related Diseases. BIOLOGY 2022; 11:1402. [PMID: 36290306 PMCID: PMC9598716 DOI: 10.3390/biology11101402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
The extended microbial genome-the gut microbiome (GM)-plays a significant role in host health and disease. It is able to influence a number of physiological functions. During dysbiosis, GM is associated with the development of various chronic diseases with impaired bone quality. In general, GM is important for bone homeostasis and can affect it via several mechanisms. This review describes the roles of GM in bone homeostasis through influencing the immune and endocrine functions, short-chain fatty acids production, calcium absorption and the gut-brain axis. The relationship between GM composition and several bone-related diseases, specifically osteoporosis, osteoarthritis, rheumatoid arthritis, diabetes mellitus, obesity and bone cancer, is also highlighted and summarized. GM manipulation may become a future adjuvant therapy in the prevention of many chronic diseases. Therefore, the beneficial effects of probiotic therapy to improve the health status of individuals with aforementioned diseases are provided, but further studies are needed to clearly confirm its effectiveness. Recent evidence suggests that GM is responsible for direct and indirect effects on drug efficacy. Accordingly, various GM alterations and interactions related to the treatment of bone-related diseases are mentioned as well.
Collapse
Affiliation(s)
- Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| |
Collapse
|
6
|
Fasitasari M, Subagio HW, Suprihati S. The role of synbiotics in improving inflammatory status in nasopharyngeal carcinoma patients. J Basic Clin Physiol Pharmacol 2022; 34:263-275. [PMID: 35671251 DOI: 10.1515/jbcpp-2021-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that grows from the epithelial cells of nasopharynx. NPC has the ability to modify its metabolism and leads the patient to suffer from malnutrition and cachexia, therefore aggravates the occurrence of impaired inflammatory response. Currently, available treatments for NPC are chemotherapy, radiotherapy, or chemoradiotherapy. Despite of its efficacy, these regimens have been known to elicit various inflammation-related side effects including infection, diarrhea, and mucositis. It has long been established that increased activity of inflammatory response is associated to low survival rate in both early and advanced stage of cancer. Furthermore, uncontrolled and dysregulated inflammatory response are significantly correlated with malignant progression of cancer. Considering how pivotal inflammation to malignancy progression, there is a need for effective strategies to modulate inflammatory response. Various strategies have been proposed to improve immune response in NPC patients including dietary supplementation of synbiotics. Synbiotics refers to the manipulation of both probiotics and prebiotics to provide a synergistic benefit to the host by promoting the growth of beneficial bacteria while inhibiting the growth of pathogenic bacteria. There is a growing number of evidences related to the potential of synbiotics in modulating the pro-inflammatory response and improve immune systems in a variety of conditions, including cancer. In this study, we will discuss the immunomodulatory effects of synbiotics in the nasopharyngeal carcinoma occurrences.
Collapse
Affiliation(s)
- Minidian Fasitasari
- Department of Nutrition, Medical Faculty of Universitas Islam Sultan Agung, Semarang, Indonesia
| | | | - Suprihati Suprihati
- Department of Otolaryngology, Medical Faculty of Universitas Diponegoro, Semarang, Indonesia
| |
Collapse
|
7
|
Role of probiotics in the management of cervical cancer: An update. Clin Nutr ESPEN 2022; 48:5-16. [DOI: 10.1016/j.clnesp.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
|
8
|
Mucoadhesive wafers for buccal delivery of probiotic bacteria: Mechanical properties and enumeration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Zanecosky R. Pediatric Patients and Dietary Choices: Examining Alternative Options, Decision Making, and Misinformation. Clin J Oncol Nurs 2020; 24:290-295. [PMID: 32441693 DOI: 10.1188/20.cjon.290-295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Nutrition is a key component of oncologic therapies and treatments. Patients and families are interested in the integration of alternative diets to promote therapy response as well as counteract the cancer. With the expansion of online and social media presence comes the endorsement of nonscientific claims. OBJECTIVES The purpose of this article is to review alternative diets and discuss the basis of good nutrition in pediatric patients with cancer. This article will also explore where patients and families are likely to seek their information and assess their level of trust in the information. METHODS Five alternative diets and two supplements were assessed through a literature review for their effect on pediatric patients with cancer. FINDINGS Additional research is needed to prove consistent and definitive dietary benefits for pediatric patients with cancer; however, some diets have demonstrated promising results. A general diet for pediatric patients with cancer consists of an appropriate distribution of nutritious carbohydrates, proteins, and fats. However, unregulated sources of information remain a risk.
Collapse
|
10
|
Nozari S, Faridvand Y, Etesami A, Ahmad Khan Beiki M, Miresmaeili Mazrakhondi SA, Abdolalizadeh J. Potential anticancer effects of cell wall protein fractions from Lactobacillus paracasei on human intestinal Caco-2 cell line. Lett Appl Microbiol 2019; 69:148-154. [PMID: 31278768 DOI: 10.1111/lam.13198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
Abstract
Consumption of probiotics has an important role in colorectal cancer prevention. In this study, we aimed to explore that the cell wall protein fractions from Lactobacillus paracasei could induce apoptosis on Caco-2 cell line. The cell wall proteins from L. paracasei were fractionated by gel filtration chromatography (F1, F2 and F3) and characterized by polyacrylamide gel electrophoresis (SDS-PAGE). The anticancer properties were evaluated using MTT assay and Annexin V-FITC/PI staining. Administration of L. paracasei increased a significant concentration- and time-dependent anti-proliferative effect on Caco-2 cell line, determined by cell viability assays. However, a dramatic decrease in cell viability of Caco-2 cells was observed at the concentration of 100 µg ml-1 of F1 L. paracasei for 72 h (58% cell viability, P < 0·05) The results showed that F1 L. paracasei could induce apoptosis in Caco-2 cancer cell line by increased in annexin V and propidium iodide staining for 72 h (up to 90·6%, P < 0·001). These results indicated the importance of the anticancer effects of cell wall protein fractions of L. paracasei in human colon carcinoma Caco-2 cell line. Thus, cell wall protein fractions of L. paracasei can be a potential chemotherapeutic agent against Caco-2 cell lines. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: Our findings revealed that the newly identified cell wall protein fractions from probiotic Lactobacillus paracasei inhibit the cell growth of human colon carcinoma cell line (Caco-2), and the results indicated that the cell wall proteins from L. paracasei can be a potential chemotherapeutic agent against Caco-2 cell lines.
Collapse
Affiliation(s)
- S Nozari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Y Faridvand
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Etesami
- Department of Microbiology, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M Ahmad Khan Beiki
- MD school of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - J Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10:540. [PMID: 31308358 PMCID: PMC6629629 DOI: 10.1038/s41419-019-1769-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours' aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Collapse
Affiliation(s)
- Elham Alsahafi
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Nina Raulf
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Philippe Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Thomas Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Dome P, Tombor L, Lazary J, Gonda X, Rihmer Z. Natural health products, dietary minerals and over-the-counter medications as add-on therapies to antidepressants in the treatment of major depressive disorder: a review. Brain Res Bull 2019; 146:51-78. [DOI: 10.1016/j.brainresbull.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/04/2018] [Accepted: 12/26/2018] [Indexed: 12/23/2022]
|
13
|
Agah S, Alizadeh AM, Mosavi M, Ranji P, Khavari-Daneshvar H, Ghasemian F, Bahmani S, Tavassoli A. More Protection of Lactobacillus acidophilus Than Bifidobacterium bifidum Probiotics on Azoxymethane-Induced Mouse Colon Cancer. Probiotics Antimicrob Proteins 2018; 11:857-864. [DOI: 10.1007/s12602-018-9425-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Irecta-Nájera CA, Del Rosario Huizar-López M, Casas-Solís J, Castro-Félix P, Santerre A. Protective Effect of Lactobacillus casei on DMH-Induced Colon Carcinogenesis in Mice. Probiotics Antimicrob Proteins 2018; 9:163-171. [PMID: 28316010 DOI: 10.1007/s12602-017-9253-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The administration of probiotics is a promising approach to reduce the prevalence of colon cancer, a multifactorial disease, with hereditary factors, as well as environmental lifestyle-related risk factors. Biogenic polyamines, putrescine, spermidine, and spermine are small cationic molecules with great roles in cell proliferation and differentiation as well as regulation of gene expression. Ornithine decarboxylase is the first rate-limiting enzyme for polyamine synthesis, and upregulation of ornithine decarboxylase activity and polyamine metabolism has been associated with abnormal cell proliferation. This paper is focused on studying the protective role of Lactobacillus casei ATCC 393 in a chemically induced mouse model of colon carcinogenesis, directing our attention on aberrant crypt foci as preneoplastic markers, and on polyamine metabolism as a possible key player in carcinogenesis. BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) to induce colon cancer (20 mg/kg body weight, subcutaneous, twice a week for 24 weeks). L. casei ATCC 393 was given orally (106 CFU, twice a week), 2 weeks before DMH administration. Hematoxylin and eosin staining, high-performance liquid chromatography, and Western blotting were used to evaluate aberrant crypt foci, urinary polyamines, and ornithine decarboxylase expression in the colon. The experimental data showed that the preventive administration of L. casei ATCC 393 may delay the onset of cancer as it significantly reduced the number of DMH-induced aberrant crypt foci, the levels of putrescine, and the expression of ornithine decarboxylase. Hence, this probiotic strain has a prospective role in protection against colon carcinogenesis, and its antimutagenic activity may be associated with the maintenance of polyamine metabolism.
Collapse
Affiliation(s)
- Cesar Antonio Irecta-Nájera
- Departamento de Salud, El Colegio de La Frontera Sur, Periférico Sur s/n, María Auxiliadora, 29290, San Cristóbal de Las Casas, Chiapas, Mexico
| | - María Del Rosario Huizar-López
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Josefina Casas-Solís
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Patricia Castro-Félix
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, C.P. 45110, Zapopan, Jalisco, Mexico.
| |
Collapse
|
15
|
Yadav R, Shukla P. An overview of advanced technologies for selection of probiotics and their expediency: A review. Crit Rev Food Sci Nutr 2017; 57:3233-3242. [DOI: 10.1080/10408398.2015.1108957] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ruby Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
16
|
Probiotics for the treatment of upper and lower respiratory‐tract infections in children: systematic review based on randomized clinical trials. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2015. [DOI: 10.1016/j.jpedp.2015.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Araujo GVD, Oliveira Junior MHD, Peixoto DM, Sarinho ESC. Probiotics for the treatment of upper and lower respiratory-tract infections in children: systematic review based on randomized clinical trials. J Pediatr (Rio J) 2015; 91:413-27. [PMID: 26054771 DOI: 10.1016/j.jped.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/06/2015] [Accepted: 03/19/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Evaluate the effect of probiotics on the symptoms, duration of disease, and the occurrence of new episodes of upper and lower respiratory infections in healthy children. SOURCES In order to identify eligible randomized controlled trials, two reviewers accessed four electronic databases [MEDLINE/PubMed, Scopus (Elsevier), Web of Science, and Cochrane (Cochrane VHL)], as well as ClinicalTrials.gov until January 2015. Descriptors were determined by using the Medical Subject Headings tool, following the same search protocol. SUMMARY OF THE FINDINGS Studies showed to be heterogeneous regarding strains of probiotics, the mode of administration, the time of use, and outcomes. The present review identified 11 peer-reviewed, randomized clinical trials, which analyzed a total of 2417 children up to 10 incomplete years of age. In the analysis of the studies, reduction in new episodes of disease was a favorable outcome for the use of probiotics in the treatment of respiratory infections in children. It is noteworthy that most of these studies were conducted in developed countries, with basic sanitation, health care, and strict, well-established and well-organized guidelines on the use of probiotics. Adverse effects were rarely reported, demonstrating probiotics to be safe. CONCLUSIONS Despite the encouraging results - reducing new episodes of respiratory infections - the authors emphasize the need for further research, especially in developing countries, where rates of respiratory infections in children are higher when compared to the high per capita-income countries identified in this review.
Collapse
Affiliation(s)
- Georgia Véras de Araujo
- Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Hospital das Clínicas, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Centro de Pesquisas em Alergia e Imunologia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil.
| | - Mário Henriques de Oliveira Junior
- Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Department of Internal Medicine, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Décio Medeiros Peixoto
- Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Centro de Pesquisas em Alergia e Imunologia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Department of Pediatrics, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Emanuel Sávio Cavalcanti Sarinho
- Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Centro de Pesquisas em Alergia e Imunologia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Department of Pediatrics, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil
| |
Collapse
|
18
|
Neuroprotective activities of fermented Ganoderma lucidum extracts by lactic acid bacteria against H2O2-stimulated oxidative stress in PC12 cells. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0181-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Parsa P, Alizadeh M, Rezazad Bari M, Akbarian Moghar A. Optimisation of probiotic yoghurt production enriched with phytosterols. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Parinaz Parsa
- Department of Food Science and Technology; Agricultural Faculty; Urmia University; Urmia Iran
| | - Mohammad Alizadeh
- Department of Food Science and Technology; Agricultural Faculty; Urmia University; Urmia Iran
| | - Mahmoud Rezazad Bari
- Department of Food Science and Technology; Agricultural Faculty; Urmia University; Urmia Iran
| | - Ali Akbarian Moghar
- Department of Research and Development; Iran Dairy Industry Co.; Tehran Iran
| |
Collapse
|
20
|
Patel S, Shukla R, Goyal A. Probiotics in valorization of innate immunity across various animal models. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
21
|
Bhat A, Irorere V, Bartlett T, Hill D, Kedia G, Charalampopoulos D, Nualkaekul S, Radecka I. Improving survival of probiotic bacteria using bacterial poly-γ-glutamic acid. Int J Food Microbiol 2015; 196:24-31. [DOI: 10.1016/j.ijfoodmicro.2014.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/10/2014] [Accepted: 11/27/2014] [Indexed: 12/22/2022]
|
22
|
Zhang G, Zhang J, Wang X, Yang W, Sun Z, Kumar CN, Guan H, Guan J. Apoptosis of human tongue squamous cell carcinoma cell (CAL-27) induced by Lactobacillus sp. A-2 metabolites. J Appl Oral Sci 2014; 22:282-6. [PMID: 25141199 PMCID: PMC4126823 DOI: 10.1590/1678-775720130645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/06/2014] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To study the effect of Lactobacillus sp. A-2 metabolites on viability of CAL-27 cells and apoptosis in CAL-27 cells. METHODS Lactobacillus sp. A-2 metabolites 1 and 2 (LM1 and LM2) were obtained by culturing Lactobacillus sp. A-2 in reconstituted whey medium and whey-inulin medium; the cultured CAL-27 cells were treated with different concentrations of LM1 and LM2 (0, 3, 6, 12, 24, 48 mg/mL) and assayed by methyl thiazolyltetrazolium (MTT) method; morphological changes of apoptotic cell were observed under fluorescence microscopy by acridine orange (Ao) fluorescent staining; flow cytometry method (FCM) and agarose gel electrophoresis were used to detect the apoptosis of CAL-27 cells treated LM1 and LM2. RESULTS The different concentrations of LM1 and LM2 could restrain the growth of CAL-27 cells, and in a dose-dependent manner; the apoptosis of CAL-27 cells was obviously induced and was time-dependent. CONCLUSIONS Viability of CAL-27 cells was inhibited by Lactobacillus sp. A-2 metabolites; Lactobacillus sp. A-2 metabolites could induce CAL-27 cells apoptosis; study on the bioactive compounds in the Lactobacillus sp. A-2 metabolites and their molecular mechanism is in progress.
Collapse
Affiliation(s)
- Guoliang Zhang
- Stomatological College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jie Zhang
- Pharmacy School, Qiqihaer Medical University, Qiqihaer, Heilongjiang, China
| | - Xinyu Wang
- Stomatological College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wenqin Yang
- Research Center of Microecological Engineering Technology, Qiqihaer Medical University, Qiqihaer, Heilongjiang, China
| | - Zhihui Sun
- Stomatological College, Jiamusi University, Jiamusi, Heilongjiang, China
| | | | - Hong Guan
- Research Center of Microecological Engineering Technology, Qiqihaer Medical University, Qiqihaer, Heilongjiang, China
| | - Jian Guan
- Stomatological College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|