1
|
Smaoui S, Echegaray N, Kumar M, Chaari M, D'Amore T, Shariati MA, Rebezov M, Lorenzo JM. Beyond Conventional Meat Preservation: Saddling the Control of Bacteriocin and Lactic Acid Bacteria for Clean Label and Functional Meat Products. Appl Biochem Biotechnol 2024; 196:3604-3635. [PMID: 37615854 DOI: 10.1007/s12010-023-04680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Advancements in food science and technology have paved the way for the development of natural antimicrobial compounds to ensure the safety and quality of meat and meat products. Among these compounds, bacteriocin produced by lactic acid bacteria has gained considerable scientific attention for its ability to preserve the healthy properties of meat while preventing spoilage. This natural preservative is seen as a pioneering tool and a potent alternative to chemical preservatives and heat treatment, which can have harmful effects on the nutritional and sensory qualities of meat. Bacteriocin produced by lactic acid bacteria can be used in various forms, including as starter/protective cultures for fermented meats, purified or partially purified forms, loaded in active films/coatings, or established in encapsulate systems. This review delves into the downstream purification schemes of LAB bacteriocin, the elucidation of their characteristics, and their modes of action. Additionally, the application of LAB bacteriocins in meat and meat products is examined in detail. Overall, the use of LAB bacteriocins holds immense potential to inspire innovation in the meat industry, reducing the dependence on harmful chemical additives and minimizing the adverse effects of heat treatment on nutritional and sensory qualities. This review provides a comprehensive understanding of the potential of bacteriocin produced by lactic acid bacteria as a natural and effective meat preservative.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia.
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Moufida Chaari
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Teresa D'Amore
- Deparment of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121, Foggia, Italy
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave, Almaty, 050060, Republic of Kazakhstan.
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, 109316, Russian Federation
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, 32004, Spain
| |
Collapse
|
2
|
Khakpour M, Mohsenzadeh M, Salari A. Feasibility of lactiplantibacillus plantarum postbiotics production in challenging media by different techniques. AMB Express 2024; 14:47. [PMID: 38668839 PMCID: PMC11052967 DOI: 10.1186/s13568-024-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The postbiotic derived from Lactiplantibacillus plantarum bacteria was produced in three culture media: milk, MRS, and whey, and its antibacterial and antifungal properties were evaluated. To investigate the production efficiency of postbiotics, three methods, heating, sonication and centrifugation, were utilized to prepare postbiotics in MRS broth culture medium. The antibacterial potency of the postbiotic was evaluated using the agar well-diffusion method, and MIC and MBC tests were conducted for different treatments. The results of the study showed that the postbiotic prepared in food environments such as milk and cheese whey can have antibacterial and antifungal properties similar to the postbiotic prepared in the MRS culture medium. However, it is possible to enrich food matrices such as milk and cheese whey and make further adjustments in terms of pH settings. Additionally, the thermal process was able to create a nanoscale postbiotic, which is a significant achievement for the application of postbiotics in the food and pharmaceutical industries. The future outlook of postbiotics clearly indicates that the emergence of this generation of probiotics can have an attractive and functional position in the food and pharmaceutical industries. Therefore, future research focusing on this subject will contribute to the development of this generation of postbiotics.
Collapse
Affiliation(s)
- Mahsa Khakpour
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Bodie AR, Wythe LA, Dittoe DK, Rothrock MJ, O’Bryan CA, Ricke SC. Alternative Additives for Organic and Natural Ready-to-Eat Meats to Control Spoilage and Maintain Shelf Life: Current Perspectives in the United States. Foods 2024; 13:464. [PMID: 38338599 PMCID: PMC10855140 DOI: 10.3390/foods13030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Food additives are employed in the food industry to enhance the color, smell, and taste of foods, increase nutritional value, boost processing efficiency, and extend shelf life. Consumers are beginning to prioritize food ingredients that they perceive as supporting a healthy lifestyle, emphasizing ingredients they deem acceptable as alternative or "clean-label" ingredients. Ready-to-eat (RTE) meat products can be contaminated with pathogens and spoilage microorganisms after the cooking step, contributing to food spoilage losses and increasing the risk to consumers for foodborne illnesses. More recently, consumers have advocated for no artificial additives or preservatives, which has led to a search for antimicrobials that meet these demands but do not lessen the safety or quality of RTE meats. Lactates and diacetates are used almost universally to extend the shelf life of RTE meats by reducing spoilage organisms and preventing the outgrowth of the foodborne pathogen Listeria monocytogenes. These antimicrobials applied to RTE meats tend to be broad-spectrum in their activities, thus affecting overall microbial ecology. It is to the food processing industry's advantage to target spoilage organisms and pathogens specifically.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Lindsey A. Wythe
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Athens, GA 30605, USA;
| | - Corliss A. O’Bryan
- Department of Food Science, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA;
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| |
Collapse
|
4
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023:1-31. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
5
|
Guo S, Da L, Li L, Li B, Wang D, Liu W, Menghe B, Chen Y. Composition and changes of microflora in the manufacturing process of traditional hurood. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Bhattacharya D, Nanda PK, Pateiro M, Lorenzo JM, Dhar P, Das AK. Lactic Acid Bacteria and Bacteriocins: Novel Biotechnological Approach for Biopreservation of Meat and Meat Products. Microorganisms 2022; 10:2058. [PMID: 36296334 PMCID: PMC9611938 DOI: 10.3390/microorganisms10102058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Meat and meat products are perishable in nature, and easily susceptible to microbial contamination and chemical deterioration. This not only results in an increased risk to health of consumers, but also causes economic loss to the meat industry. Some microorganisms of the lactic acid bacteria (LAB) group and their ribosomal-synthesized antimicrobial peptides-especially bacteriocins-can be used as a natural preservative, and an alternative to chemical preservatives in meat industry. Purified or partially purified bacteriocins can be used as a food additive or incorporated in active packaging, while bacteriocin-producing cells could be added as starter or protective cultures for fermented meats. Large-scale applications of bacteriocins are limited, however, mainly due to the narrow antimicrobial spectrum and varying stability in different food matrixes. To overcome these limitations, bioengineering and biotechnological techniques are being employed to combine two or more classes of bacteriocins and develop novel bacteriocins with high efficacy. These approaches, in combination with hurdle concepts (active packaging), provide adequate safety by reducing the pathogenicity of spoilage microorganisms, improving sensory characteristics (e.g., desirable flavor, texture, aroma) and enhancing the shelf life of meat-based products. In this review, the biosynthesis of different classes of LAB bacteriocins, their mechanism of action and their role in the preservation of meats and meat products are reviewed.
Collapse
Affiliation(s)
- Dipanwita Bhattacharya
- Department of Livestock Products Technology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B, Judges Court Road, Alipore, Kolkata 700027, India
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India
| |
Collapse
|
7
|
De Marco I, Fusieger A, Nero LA, Kempka AP, Moroni LS. Bacteriocin-like inhibitory substances (BLIS) synthesized by Lactococcus lactis LLH20: Antilisterial activity and application for biopreservation of minimally processed lettuce (Lactuca sativa L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
İncili GK, Karatepe P, Akgöl M, Güngören A, Koluman A, İlhak Oİ, Kanmaz H, Kaya B, Hayaloğlu AA. Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks. Food Microbiol 2022; 104:104001. [DOI: 10.1016/j.fm.2022.104001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
9
|
Impact of chitosan embedded with postbiotics from Pediococcus acidilactici against emerging foodborne pathogens in vacuum-packaged frankfurters during refrigerated storage. Meat Sci 2022; 188:108786. [DOI: 10.1016/j.meatsci.2022.108786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
|
10
|
Comparison of biopreservatives obtained from a starter culture of Pediococcus acidilactici by different techniques. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
İncili GK, Karatepe P, Akgöl M, Kaya B, Kanmaz H, Hayaloğlu AA. Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol 2021; 184:429-437. [PMID: 34166693 DOI: 10.1016/j.ijbiomac.2021.06.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
This study was carried out to characterize antioxidant activity, total phenolic content, and the phenolic and flavonoids profile of postbiotic of Pediococcus acidilactici and to evaluate the effects of postbiotics (10% and 50%) alone and in combination with chitosan coating (1%) on the microbial and chemical quality of chicken breast fillets during storage at 4 °C. Antioxidant activity and total phenolic content of the postbiotics were found to be 1291.02 ± 1.5 mg/L TEAC and 2336.11 ± 2.36 mg/L GAE, respectively. The most abundant phenolic was vanillic acid, followed by t-caffeic, gallic, and caftaric acids. The postbiotic-chitosan (50% + 1%) combination decreased L. monocytogenes and S. Typhimurium counts by 1.5 and 2.1 log10 CFU/g, respectively, compared to the control (P < 0.05). This combination decreased the total viable count (TVC), lactic acid bacteria (LAB), and psychrotrophic bacteria count compared to the control (P < 0.05). No differences were found in thiobarbituric acid (TBA) values among the samples during storage (P > 0.05). Postbiotic treatment did not significantly change the pH values and color properties of the breast fillets (P > 0.05). Postbiotic-chitosan combinations extended the shelf-life by up to 12 days compared to the control. In conclusion, the postbiotic-chitosan combination can be used to preserve and improve the microbial quality of chicken meat products.
Collapse
Affiliation(s)
- Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey.
| | - Pınar Karatepe
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Büşra Kaya
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Hilal Kanmaz
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
12
|
Hernández-Aquino S, Maldonado Simán EDEJ, Miranda-Romero LA, Alarcón Zuñiga B. Meat Native Lactic Acid Bacteria Capable to Inhibit Salmonella sp. and Escherichia coli. Biocontrol Sci 2020; 25:107-112. [PMID: 32507788 DOI: 10.4265/bio.25.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this study, lactic acid bacteria (LAB) strains were isolated from ground beef, and it was analyzed if they have any effect on the growth of two reference bacteria (Salmonella sp. and Escherichia coli). It was found that five isolates showed an inhibitory effect in both reference bacteria by spot at the lawn assay. These bacteria were selected to perform growth kinetics in co-culture to determine if they modify the growth parameters of the reference bacteria. Subsequently, LAB cultures and three treatments (crude extract, thermally treated and thermally treated with neutral pH) of cells free supernatants (CFS) were screened by the agar well diffusion assay. In co-culture, selected LAB altered the growth rate and reduce the maximum population of both reference bacteria. While, LAB cultures and CFS also showed antimicrobial activity, and there was no significant difference among CFS treatments. LAB isolated from ground beef showed an antimicrobial effect against the reference bacteria that could be used for meat biopreservation purposes.
Collapse
|
13
|
Sindi A, Badsha MB, Nielsen B, Ünlü G. Antimicrobial Activity of Six International Artisanal Kefirs Against Bacillus cereus, Listeria monocytogenes, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus. Microorganisms 2020; 8:E849. [PMID: 32512951 PMCID: PMC7356263 DOI: 10.3390/microorganisms8060849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
Kefir, a fermented dairy beverage, exhibits antimicrobial activity due to many metabolic products, including bacteriocins, generated by lactic acid bacteria. In this study, the antimicrobial activities of artisanal kefir products from Fusion Tea (A), Britain (B), Ireland (I), Lithuania (L), the Caucuses region (C), and South Korea (K) were investigated against select foodborne pathogens. Listeria monocytogenes CWD 1198, Salmonella enterica serovar Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923, and Bacillus cereus ATCC 14579 were inhibited by artisanal kefirs made with kefir grains from diverse origins. Kefirs A, B, and I inhibited all bacterial indicator strains examined at varying levels, except Escherichia coli ATCC 12435 (non-pathogenic, negative control). Kefirs K, L, and C inhibited all indicator strains, except S. aureus ATCC 25923 and E. coli ATCC 12435. Bacteriocins present in artisanal kefirs were determined to be the main antimicrobials in all kefirs examined. Kefir-based antimicrobials are being proposed as promising natural biopreservatives as per the results of the study.
Collapse
Affiliation(s)
- Abrar Sindi
- School of Food Science, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-2312, USA; (A.S.); (B.N.)
| | - Md. Bahadur Badsha
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, 875 Perimeter Drive, MS 1122, Moscow, ID 83844-1122, USA;
| | - Barbara Nielsen
- School of Food Science, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-2312, USA; (A.S.); (B.N.)
| | - Gülhan Ünlü
- School of Food Science, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-2312, USA; (A.S.); (B.N.)
- School of Food Science, Washington State University, Pullman, WA 99164-6376, USA
- Department of Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-0904, USA
| |
Collapse
|
14
|
Nielsen B, Colle MJ, Ünlü G. Meat safety and quality: a biological approach. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Barbara Nielsen
- School of Food Science University of Idaho 875 Perimeter Drive Moscow ID 83844‐2312 USA
| | - Michael J. Colle
- Department of Animal and Veterinary Science University of Idaho 875 Perimeter Drive Moscow ID 83844‐2330 USA
| | - Gülhan Ünlü
- School of Food Science University of Idaho 875 Perimeter Drive Moscow ID 83844‐2312 USA
- School of Food Science Washington State University Pullman WA 99164‐6376 USA
- Department of Biological Engineering University of Idaho 875 Perimeter Drive Moscow ID 83844‐0904 USA
| |
Collapse
|
15
|
The efficacy of individual and combined commercial protective cultures against Listeria monocytogenes, Salmonella, O157 and non-O157 shiga toxin-producing Escherichia coli in growth medium and raw milk. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Bahrami A, Delshadi R, Jafari SM, Williams L. Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Stelmasiak A, Wyrwisz J, Wierzbicka A. Effect of packaging methods on salt-reduced smoked-steamed ham using herbal extracts. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1660409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Adrian Stelmasiak
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jarosław Wyrwisz
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Quintana G, Niederle MV, Minahk CJ, Picariello G, Nader-Macías MEF, Pasteris SE. Nisin Z produced by Lactococcus lactis from bullfrog hatchery is active against Citrobacter freundii, a red-leg syndrome related pathogen. World J Microbiol Biotechnol 2017; 33:186. [DOI: 10.1007/s11274-017-2353-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
19
|
Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28626762 PMCID: PMC5463104 DOI: 10.1155/2017/6820369] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oscypek and korycinski are traditional Polish cheeses, exclusively produced in Tatra and in Podlasie region, respectively, produced from raw, unpasteurized milk. The 29 Lactobacillus plantarum strains were isolated on MRS agar from 12 cheese samples and used as a material for study. The main purpose of the work was to assess the antimicrobial properties and recognition of selected strains for the unique antagonistic activity and preservation role in food. It has been found that the highest antimicrobial activity was observed in the case of L. monocytogenes strains; however, the level of that activity was different depending on the Lb. plantarum strain. Strains from oscypek produced broad spectrum, and a few strains isolated from korycinski cheese produced a narrow spectrum of antimicrobial compounds, other than organic acids and hydrogen peroxide. Moreover, the antagonistic activity shown by Lb. plantarum strains is connected with the source from which a given strain was isolated. Strains isolated from oscypek cheese represented stronger activity against L. monocytogenes, whereas strains isolated from korycinski cheese were more active against E. coli. Strains Lb. plantarum Os13 and Kor14 could be considered as good candidates for protective cultures to extend durability of food products.
Collapse
|
20
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Vijayakumar PP, Muriana PM. Inhibition of Listeria monocytogenes on Ready-to-Eat Meats Using Bacteriocin Mixtures Based on Mode-of-Action. Foods 2017; 6:E22. [PMID: 28335414 PMCID: PMC5368541 DOI: 10.3390/foods6030022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Bacteriocin-producing (Bac⁺) lactic acid bacteria (LAB) comprising selected strains of Lactobacillus curvatus, Lactococcus lactis, Pediococcus acidilactici, and Enterococcus faecium and thailandicus were examined for inhibition of Listeria monocytogenes during hotdog challenge studies. The Bac⁺ strains, or their cell-free supernatants (CFS), were grouped according to mode-of-action (MOA) as determined from prior studies. Making a mixture of as many MOAs as possible is a practical way to obtain a potent natural antimicrobial mixture to address L. monocytogenes contamination of RTE meat products (i.e., hotdogs). The heat resistance of the bacteriocins allowed the use of pasteurization to eliminate residual producer cells for use as post-process surface application or their inclusion into hotdog meat emulsion during cooking. The use of Bac⁺ LAB comprising 3× MOAs directly as co-inoculants on hotdogs was not effective at inhibiting L. monocytogenes. However, the use of multiple MOA Bac⁺ CFS mixtures in a variety of trials demonstrated the effectiveness of this approach by showing a >2-log decrease of L. monocytogenes in treatment samples and 6-7 log difference vs. CONTROLS These data suggest that surface application of multiple mode-of-action bacteriocin mixtures can provide for an Alternative 2, and possibly Alternative 1, process category as specified by USDA-FSIS for control of L. monocytogenes on RTE meat products.
Collapse
Affiliation(s)
- Paul Priyesh Vijayakumar
- Department of Animal and Food Science, University of Kentucky, 213 W.P. Garrigus Building, Lexington, KY 40546-0215, USA.
| | - Peter M Muriana
- Department of Animal and Food Science, University of Kentucky, 213 W.P. Garrigus Building, Lexington, KY 40546-0215, USA.
- Robert M. Kerr Food & Agricultural Products Centre, Oklahoma State University, 109 FAPC Building, Monroe Street, Stillwater, OK 74078-6055, USA.
| |
Collapse
|