1
|
V G, K N C, Ramkumar S, Halami PM, G SK. In vitro fermentation of glycosaminoglycans from mackerel fish waste and its role in modulating the antioxidant status and gut microbiota of high fat diet-fed C57BL/6 mice. Food Funct 2023; 14:7130-7145. [PMID: 37461843 DOI: 10.1039/d2fo03603g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Bioactive polysaccharides such as glycosaminoglycans (GAGs) exhibit potential health benefits for several health complications including obesity. The gut microbiota plays a key role in regulating host metabolism, nutrition and immunity. The present work assessed the potential of extracted GAGs (e-GAGs) in maintaining the gut microbiota and ameliorating the effects of high fat diet in in vitro and in vivo models. The in vitro fermentability of e-GAGs extracted from mackerel fish waste was analyzed with Lactobacillus plantarum (LP) and Bifidobacterium bifidum (BB); e-GAGs at 0.5 and 1% proved their prebiotic nature up to 48 h. The pH value decreased from 6.23 to 3.32, the cell density increased from 1.70 to 2.32, the viable cell count increased from 8 to 12 log CFU mL-1, and short chain fatty acid (SCFA) production was ≈33, 31 and 36% for LP and ≈37, 29 and 34% for BB in terms of acetic acid, propionic acid and butyric acid, respectively. In vivo studies on high fat diet (HFD)-fed C57BL/6 mice with e-GAGs (380 and 760 mg kg-1 diet) showed ameliorated gut microbiome and tissue/plasma antioxidant enzyme activities, and also the e-GAG-fed group showed significantly (P < 0.05) decreased lipid peroxidation. Cecal microbial analysis showed the health-promoting effects of e-GAGs in reducing (P < 0.05) the obesity ratio of Firmicutes to Bacteroidetes (F/B) within the range (5.32 and 5.26) compared with HFD (6.23). Hence, e-GAGs can be a potential molecule for the treatment of obesity by restoring the redox status under oxidative stress and ameliorating the gut microbes that produce SCFAs which are known to have health beneficial effects.
Collapse
Affiliation(s)
- Geetha V
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru - 570 020, India.
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore - 574199, Karnataka, India
| | - Chathur K N
- Department of Food Protectants & Infestation Control, CSIR-Central Food Technological Research Institute, Mysuru - 570 020, India
| | - Smita Ramkumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru - 570 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prakash M Halami
- Department of Microbiology & Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru - 570 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Kumar G
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru - 570 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore - 574199, Karnataka, India
| |
Collapse
|
2
|
Tsukahara T, Makioka-Itaya Y, Takimoto H, Ijichi T. Oral supplementation of a cell preparation of Enterococcus faecalis strain EC-12 stimulates superoxide dismutase production in the livers of healthy and arthritis-induced mice. J Clin Biochem Nutr 2023; 72:39-45. [PMID: 36777079 PMCID: PMC9899913 DOI: 10.3164/jcbn.22-77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/03/2022] [Indexed: 11/07/2022] Open
Abstract
Hepatitis, a major human chronic inflammation disease, has been linked to oxidative stress, which can be initiated by radicals produced during the oxidative metabolism. Oxidative damage has been also observed in arthritis-induced mice. Here we evaluated whether supplementation of a cell preparation of Enterococcus faecalis EC-12 could induce superoxide dismutase activity and/or damage in the livers of healthy mice or mice with arthritis. In Experiment 1, both healthy and arthritis-induced mice were orally given a saline solution, or a solution with a low (0.2 mg/mouse/day) or a high (2.0 mg/mouse/day) concentration of E. faecalis EC-12 for 49 consecutive days. Manganese superoxide dismutase activity increased in E. faecalis EC-12-supplemented mice but with no arthritis. In Experiment 2, mice received orally either a saline or an E. faecalis EC-12 suspension (10 mg/kg of body weight/day) for 28 consecutive days. No changes in tissues and levels of function markers and 8-hydroxy-2'-deoxyguanosine were observed in mouse livers, inferring that E. faecalis EC-12 supplementation caused no damage. While mRNA expression of copper/zinc superoxide dismutase remained unaltered, that of manganese superoxide dismutase increased in E. faecalis EC-12 administration mice. In conclusion, at least in healthy mice, E. faecalis EC-12 supplementation stimulated manganese superoxide dismutase activity in liver tissues with no side effects.
Collapse
Affiliation(s)
- Takamitsu Tsukahara
- Kyoto Institute of Nutrition & Pathology, 7-2 Furuikedani Tachikawa, Ujitawara, Kyoto 610-0231, Japan,To whom correspondence should be addressed. E-mail:
| | - Yuko Makioka-Itaya
- Life Science Division, Combi Corporation, Nishibori, Sakura-ku, Saitama 338-0832, Japan
| | - Hiroaki Takimoto
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Tetsuo Ijichi
- Life Science Division, Combi Corporation, Nishibori, Sakura-ku, Saitama 338-0832, Japan
| |
Collapse
|
3
|
Ramirez-Olea H, Reyes-Ballesteros B, Chavez-Santoscoy RA. Potential application of the probiotic Bacillus licheniformis as an adjuvant in the treatment of diseases in humans and animals: A systematic review. Front Microbiol 2022; 13:993451. [PMID: 36225361 PMCID: PMC9549136 DOI: 10.3389/fmicb.2022.993451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The use of Bacillus licheniformis as a probiotic has increased significantly in recent years. Published reports demonstrate that it provides multiple benefits for health. Although there are already studies in humans and is marketed, it is mostly used in the veterinary industry still. However, its benefits could be extrapolated to humans in future. This review addresses the application of B. licheniformis, its sporulation, mechanisms of action, and its role in the resolution, treatment, and prevention of different conditions and diseases. It focuses on scientific advances from 2016 to mid-2022 and emphasizes the most common diseases in the general population. Most of the 70% of published studies about the health benefits of B. licheniformis have been published from 2016 until now. The intake of B. licheniformis has been related to the effects of modulation of the intestinal microbiota, antimicrobial activity, growth promotion, anti-inflammatory and immunostimulatory effects, promotion of the regulation of the lipid profile, increase of neurotransmitters, and stress reduction, among others. These results provide novel possible applications of this and other probiotics in general. Although many benefits can be reported on a microorganism, the combination with others could provide a better effect. Further studies like this need to be done to understand the specific advantages of each probiotic and its strains and therefore achieve a better selection of them for a specific disease or disorder.
Collapse
Affiliation(s)
- Hugo Ramirez-Olea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
| | - Bernardo Reyes-Ballesteros
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Estado de México, Ciudad López Mateos, MX, Mexico
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Monterrey, NL, Mexico
- *Correspondence: Rocio Alejandra Chavez-Santoscoy,
| |
Collapse
|
4
|
Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type douchi during fermentation. Food Res Int 2022; 153:110932. [DOI: 10.1016/j.foodres.2021.110932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022]
|